A154286 a(n) = E(k)*C(n+k,k) = Euler(k)*binomial(n+k,k) for k=4.
5, 25, 75, 175, 350, 630, 1050, 1650, 2475, 3575, 5005, 6825, 9100, 11900, 15300, 19380, 24225, 29925, 36575, 44275, 53130, 63250, 74750, 87750, 102375, 118755, 137025, 157325, 179800, 204600, 231880, 261800, 294525, 330225, 369075, 411255
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n+1)*(n+2)*(n+3)*(n+4)*5 div 24: n in [0..40]]; // Vincenzo Librandi, Sep 10 2016
-
Maple
seq(euler(4)*binomial(n+4,4),n=0..32);
-
Mathematica
CoefficientList[Series[-5/(x - 1)^5, {x, 0, 35}], x] (* Robert G. Wilson v, Jan 29 2015 *) Table[(n + 1)*(n + 2)*(n + 3)*(n + 4)*5/24, {n, 0, 25}] (* G. C. Greubel, Sep 09 2016 *) LinearRecurrence[{5,-10,10,-5,1},{5,25,75,175,350},40] (* Harvey P. Dale, Nov 18 2021 *)
-
PARI
x='x+O('x^99); Vec(5/(1-x)^5) \\ Altug Alkan, Sep 10 2016
Formula
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*5/24.
a(n) = a(n-1)*(n+4)/n (n>0), a(0)=5.
O.g.f.: 5/(1-x)^5.
E.g.f.: (5/24)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, Sep 09 2016
a(n) = 5*A000332(n+4). - Michel Marcus, Sep 10 2016
Comments