cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154292 Integers of the form m*(6*m -+ 1)/2.

Original entry on oeis.org

11, 13, 46, 50, 105, 111, 188, 196, 295, 305, 426, 438, 581, 595, 760, 776, 963, 981, 1190, 1210, 1441, 1463, 1716, 1740, 2015, 2041, 2338, 2366, 2685, 2715, 3056, 3088, 3451, 3485, 3870, 3906, 4313, 4351, 4780, 4820, 5271, 5313, 5786, 5830, 6325, 6371
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    &cat[[n*(6*n-1) div 2, n*(6*n+1) div 2]: n in [2..60 by 2]]; // Vincenzo Librandi, Sep 10 2016
  • Mathematica
    Flatten[Table[{n (6n-1)/2,n (6n+1)/2},{n,2,50,2}]] (* Harvey P. Dale, Jan 19 2013 *)
  • PARI
    Vec(x*(11+2*x+11*x^2)/((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Feb 26 2016
    

Formula

From Colin Barker, Feb 26 2016: (Start)
a(n) = (12*n^2 - 10*(-1)^n*n + 12*n - 5*(-1)^n + 5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
G.f.: x*(11 + 2*x + 11*x^2) / ((1-x)^3*(1+x)^2). (End)
E.g.f.: (1/4)*(-5 + 10*x + (5 + 24*x + 12*x^2)*exp(2*x))*exp(-x). - G. C. Greubel, Sep 10 2016
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=1} 1/a(n) = 131/11 - (2+sqrt(3))*Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = 133/11 - 3*log(12) - 2*sqrt(3)*log(2+sqrt(3)). (End)