A154296
Primes of the form (1+2+3+...+m)/15 = A000217(m)/15, for some m.
Original entry on oeis.org
-
lst={};s=0;Do[s+=n/15;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
Select[(Accumulate[Range[200]])/15,PrimeQ] (* Harvey P. Dale, Oct 30 2011 *)
-
select(x->denominator(x)==1 & isprime(x), vector(30,m,m^2+m)/30) \\ M. F. Hasler, Dec 31 2012
A154304
Primes of the form (1+2+...+m)/210 = A000217(m)/210.
Original entry on oeis.org
3, 17, 47, 419, 421
Offset: 1
-
lst={};s=0;Do[s+=n/210;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,6*9!}];lst
-
A154304(d=210)={select(x->denominator(x)==1 && isprime(x), vector(d*=2, m, m^2+m)/d)} \\ - M. F. Hasler, Jan 06 2013
A154297
Primes of the form (1+2+3+...+m)/21 = A000217(m)/21, for some m.
Original entry on oeis.org
-
lst={};s=0;Do[s+=n/21;If[Floor[s]==s,If[PrimeQ[s],AppendTo[lst,s]]],{n,0,9!}];lst
#/21&/@Select[Accumulate[Range[100]],PrimeQ[#/21]&] (* Harvey P. Dale, Dec 17 2012 *)
-
select(x->denominator(x)==1 & isprime(x), vector(42, m, m^2+m)/42) \\ - M. F. Hasler, Dec 31 2012
Showing 1-3 of 3 results.
Comments