cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154322 a(n) = 1 + n + binomial(n+3,5).

Original entry on oeis.org

1, 2, 4, 10, 26, 62, 133, 260, 471, 802, 1298, 2014, 3016, 4382, 6203, 8584, 11645, 15522, 20368, 26354, 33670, 42526, 53153, 65804, 80755, 98306, 118782, 142534, 169940, 201406, 237367, 278288, 324665, 377026, 435932, 501978, 575794, 658046, 749437, 850708
Offset: 0

Views

Author

Paul Barry, Jan 07 2009

Keywords

Comments

Row sums of number triangle A113582.
It appears that the sequence is the pairwise sum of terms in A101338 and A000389 with offsets as follows:
1, 2, 4, 10, 26, 62, 133, 260, 471, 802, 1298, ... =
1, 2, 4, 9, 20, 41, 77, 134, 219, 340, 506, ... +
0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, ...
- Gary W. Adamson, Oct 08 2015

Crossrefs

Programs

  • Magma
    [1+n+Binomial(n+3,5) : n in [0..50]]; // Wesley Ivan Hurt, Oct 08 2015
    
  • Magma
    I:=[1,2,4,10,26,62]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 09 2015
    
  • Maple
    A154322:=n->1+n+binomial(n+3,5): seq(A154322(n), n=0..50); # Wesley Ivan Hurt, Oct 08 2015
  • Mathematica
    CoefficientList[Series[(1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1 - x)^6, {x, 0, 40}], x] (* Wesley Ivan Hurt, Oct 08 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 2, 4, 10, 26, 62}, 50] (* Vincenzo Librandi, Oct 09 2015 *)
     Table[ (n + 1)*(n^4 + 4*n^3 + n^2 - 6*n + 120)/120 , {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
    Table[1+n+Binomial[n+3,5],{n,0,40}] (* Harvey P. Dale, Jan 19 2023 *)
  • PARI
    Vec((1-4*x+7*x^2-4*x^3+x^4)/(1-x)^6 + O(x^100)) \\ Altug Alkan, Oct 18 2015

Formula

G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1-x)^6;
a(n) = n + 1 + Sum_{k=0..n} binomial(k+1,2) * binomial(n-k+1,2).
a(n) = (n+1)*(n^4 +4*n^3 +n^2 -6*n +120)/120.
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6) for n>5. - Wesley Ivan Hurt, Oct 08 2015
E.g.f.: (1/120)*(120 + 120*x + 60*x^2 + 60*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Sep 10 2016