cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154348 a(n) = 16*a(n-1) - 56*a(n-2) for n>1, with a(0)=1, a(1)=16.

Original entry on oeis.org

1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

Keywords

Comments

Third binomial transform of A164609, fourth binomial transform of A164608, fifth binomial transform of A054490, sixth binomial transform of A164607, seventh binomial transform of A083100, eighth binomial transform of A164683.
lim_{n -> infinity} a(n)/a(n-1) = 8 + 2*sqrt(2) = 10.8284271247....

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A164609, A164608, A054490, A164607, A083100, A164683.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
  • Mathematica
    Join[{a=1,b=16},Table[c=16*b-56*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    LinearRecurrence[{16,-56},{1,16},30] (* Harvey P. Dale, Aug 31 2016 *)

Formula

a(n) = 16*a(n-1) - 56*a(n-2) for n>1. - Philippe Deléham, Jan 12 2009
a(n) = ( (8 + 2*sqrt(2))^n - (8 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: 1/(1 - 16*x + 56*x^2). - Klaus Brockhaus, Jan 12 2009; corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(8*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021