cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154355 a(n) = 25*n^2 - 36*n + 13.

Original entry on oeis.org

13, 2, 41, 130, 269, 458, 697, 986, 1325, 1714, 2153, 2642, 3181, 3770, 4409, 5098, 5837, 6626, 7465, 8354, 9293, 10282, 11321, 12410, 13549, 14738, 15977, 17266, 18605, 19994, 21433, 22922, 24461, 26050, 27689, 29378
Offset: 0

Views

Author

Vincenzo Librandi, Jan 07 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as A154358(n)^2 - a(n)*A154360(n)^2 = 1. See also the third comment in A154357.
Numbers of the form (3n-2)^2 + (4n-3)^2. - Bruno Berselli, Dec 12 2011
From Klaus Purath, May 06 2025: (Start)
25*a(n)-1 is a square, and a(n) is the sum of two squares (see FORMULA). There are no squares in this sequence. The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*(5*y)^2 = -1 for any integer n where a(1-n) = A154357(n). The values for k and the solutions x, y can be calculated using the following algorithm: k = sqrt(D*5^2 - 1), x(0) = 1, x(1) = 4*D*5^2 - 1, y(0) = 1, y(1) = 4*D*5^2 - 3. The two recurrences are of the form (4*D*5^2 - 2, -1).
It follows from the above that the terms of this sequence and of A154357 belong to A031396. (End)

Crossrefs

Essentially a duplicate of A007533.

Programs

  • Magma
    [25*n^2-36*n+13: n in [0..40]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    Table[25n^2-36n+13,{n,0,40}]  (* Harvey P. Dale, Apr 02 2011 *)
    LinearRecurrence[{3, -3, 1}, {13, 2, 41}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(25*n^2 - 36*n + 13", ")); \\ Vincenzo Librandi, Feb 21 2012
    

Formula

a(n) = A007533(n-1), n>0. - R. J. Mathar, Jan 14 2009
G.f.: (13 - 37*x + 74*x^2) / (1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 21 2012
E.g.f.: (13 - 11*x + 25*x^2) * exp(x). - G. C. Greubel, Sep 14 2016
From Klaus Purath, May 06 2025: (Start)
a(n) = (3*n-2)^2 + (4*n-3)^2.
25*a(n) - 1 = (25*n - 18)^2. (End)

Extensions

Offset corrected from R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 12 2011