A154355 a(n) = 25*n^2 - 36*n + 13.
13, 2, 41, 130, 269, 458, 697, 986, 1325, 1714, 2153, 2642, 3181, 3770, 4409, 5098, 5837, 6626, 7465, 8354, 9293, 10282, 11321, 12410, 13549, 14738, 15977, 17266, 18605, 19994, 21433, 22922, 24461, 26050, 27689, 29378
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[25*n^2-36*n+13: n in [0..40]]; // Bruno Berselli, Sep 15 2016
-
Mathematica
Table[25n^2-36n+13,{n,0,40}] (* Harvey P. Dale, Apr 02 2011 *) LinearRecurrence[{3, -3, 1}, {13, 2, 41}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
-
PARI
for(n=0, 40, print1(25*n^2 - 36*n + 13", ")); \\ Vincenzo Librandi, Feb 21 2012
Formula
a(n) = A007533(n-1), n>0. - R. J. Mathar, Jan 14 2009
G.f.: (13 - 37*x + 74*x^2) / (1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 21 2012
E.g.f.: (13 - 11*x + 25*x^2) * exp(x). - G. C. Greubel, Sep 14 2016
From Klaus Purath, May 06 2025: (Start)
a(n) = (3*n-2)^2 + (4*n-3)^2.
25*a(n) - 1 = (25*n - 18)^2. (End)
Extensions
Offset corrected from R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 12 2011
Comments