cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154357 a(n) = 25*n^2 - 14*n + 2.

Original entry on oeis.org

2, 13, 74, 185, 346, 557, 818, 1129, 1490, 1901, 2362, 2873, 3434, 4045, 4706, 5417, 6178, 6989, 7850, 8761, 9722, 10733, 11794, 12905, 14066, 15277, 16538, 17849, 19210, 20621, 22082, 23593, 25154, 26765, 28426, 30137, 31898, 33709, 35570, 37481, 39442, 41453, 43514
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - a(n)*A154361(n)^2 = 1.
Numbers of the form (4*n-1)^2 + (3*n-1)^2. - Bruno Berselli, Dec 11 2011
From Bruno Berselli, Dec 13 2011: (Start)
More generally, considering together this sequence and A154355, A154358-A154361, for
r = (1/4)*(1250*(n-1)*(n-2) + 75*(2*n-3)(-1)^n + 321) with n>=0, i.e. the interleaving of A154358 and A154359 (649, 99, 99, 649, 2049, 3699,...)
s = (5/2)*(50*n+3*(-1)^n-75), the interleaving of A154360 and A154361 (-180, -70, 70, 180, 320, 430,...)
t = (1/8)*(50*(n-1)*(n-2) + 3*(2*n-3)*(-1)^n + 13), the interleaving of A154355 and A154357 (13, 2, 2, 13, 41, 74,...)
we verify that r^2 - t*s^2 = 1.
For n even we obtain (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1; for n odd we have the identity shown in the first comment. (End)
sqrt(A154357(n)) for n >= 1 has the continued fraction x; [1 1 1 1 2x] where x = 5n - 2 (the part in [] being repeated). - Robert Israel, May 26 2013
For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [10n-3; {4, 1, 5n-3, 1, 4, 20n-6}] - Magus K. Chu, Sep 16 2022

Crossrefs

Programs

Formula

G.f.: (2 + 7*x + 41*x^2)/(1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 08 2012
E.g.f.: (2 + 11*x + 25*x^2)*exp(x). - G. C. Greubel, Sep 14 2016

Extensions

One entry and offset corrected by R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 11 2011