cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A154355 a(n) = 25*n^2 - 36*n + 13.

Original entry on oeis.org

13, 2, 41, 130, 269, 458, 697, 986, 1325, 1714, 2153, 2642, 3181, 3770, 4409, 5098, 5837, 6626, 7465, 8354, 9293, 10282, 11321, 12410, 13549, 14738, 15977, 17266, 18605, 19994, 21433, 22922, 24461, 26050, 27689, 29378
Offset: 0

Views

Author

Vincenzo Librandi, Jan 07 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as A154358(n)^2 - a(n)*A154360(n)^2 = 1. See also the third comment in A154357.
Numbers of the form (3n-2)^2 + (4n-3)^2. - Bruno Berselli, Dec 12 2011
From Klaus Purath, May 06 2025: (Start)
25*a(n)-1 is a square, and a(n) is the sum of two squares (see FORMULA). There are no squares in this sequence. The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*(5*y)^2 = -1 for any integer n where a(1-n) = A154357(n). The values for k and the solutions x, y can be calculated using the following algorithm: k = sqrt(D*5^2 - 1), x(0) = 1, x(1) = 4*D*5^2 - 1, y(0) = 1, y(1) = 4*D*5^2 - 3. The two recurrences are of the form (4*D*5^2 - 2, -1).
It follows from the above that the terms of this sequence and of A154357 belong to A031396. (End)

Crossrefs

Essentially a duplicate of A007533.

Programs

  • Magma
    [25*n^2-36*n+13: n in [0..40]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    Table[25n^2-36n+13,{n,0,40}]  (* Harvey P. Dale, Apr 02 2011 *)
    LinearRecurrence[{3, -3, 1}, {13, 2, 41}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(25*n^2 - 36*n + 13", ")); \\ Vincenzo Librandi, Feb 21 2012
    

Formula

a(n) = A007533(n-1), n>0. - R. J. Mathar, Jan 14 2009
G.f.: (13 - 37*x + 74*x^2) / (1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 21 2012
E.g.f.: (13 - 11*x + 25*x^2) * exp(x). - G. C. Greubel, Sep 14 2016
From Klaus Purath, May 06 2025: (Start)
a(n) = (3*n-2)^2 + (4*n-3)^2.
25*a(n) - 1 = (25*n - 18)^2. (End)

Extensions

Offset corrected from R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 12 2011

A154359 a(n) = 1250*n^2 - 700*n + 99.

Original entry on oeis.org

99, 649, 3699, 9249, 17299, 27849, 40899, 56449, 74499, 95049, 118099, 143649, 171699, 202249, 235299, 270849, 308899, 349449, 392499, 438049, 486099, 536649, 589699, 645249, 703299, 763849, 826899, 892449, 960499, 1031049
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as a(n)^2 - A154357(n)*A154361(n)^2 = 1. See also the third comment in A154357.

Programs

  • Magma
    [1250*n^2-700*n+99: n in [0..40]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {99, 649, 3699}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(1250*n^2-700*n+99", ")); \\ Vincenzo Librandi, Feb 21 2012
    

Formula

G.f.: (99 + 352*x + 2049*x^2)/(1-x)^3. - Bruno Berselli, Dec 13 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 21 2012
E.g.f.: (99 + 550*x + 1250*x^2)*exp(x). - G. C. Greubel, Sep 15 2016

Extensions

Edited by Charles R Greathouse IV, Jul 29 2010
Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

A154361 a(n) = 250*n - 70.

Original entry on oeis.org

-70, 180, 430, 680, 930, 1180, 1430, 1680, 1930, 2180, 2430, 2680, 2930, 3180, 3430, 3680, 3930, 4180, 4430, 4680, 4930, 5180, 5430, 5680, 5930, 6180, 6430, 6680, 6930, 7180, 7430, 7680, 7930, 8180, 8430, 8680, 8930, 9180
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - A154357(n)*a(n)^2 = 1. See also the third comment in A154357.

Crossrefs

Programs

Formula

G.f.: -10*(7 - 32*x)/(1-x)^2. - Bruno Berselli, Dec 13 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 21 2012
E.g.f.: 10*(-7 + 25*x)*exp(x). - G. C. Greubel, Sep 15 2016

Extensions

Offset changed and Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

A154358 a(n) = 1250*n^2 - 1800*n + 649.

Original entry on oeis.org

649, 99, 2049, 6499, 13449, 22899, 34849, 49299, 66249, 85699, 107649, 132099, 159049, 188499, 220449, 254899, 291849, 331299, 373249, 417699, 464649, 514099, 566049, 620499, 677449, 736899, 798849, 863299, 930249
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as a(n)^2 - A154355(n)*A154360(n)^2 = 1. See also the third comment in A154357.

Crossrefs

Programs

  • Magma
    [1250*n^2-1800*n+649: n in [0..40]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {649, 99, 2049}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(1250*n^2 - 1800*n + 649", ")); \\ Vincenzo Librandi, Feb 21 2012
    

Formula

G.f.: (649 - 1848*x + 3699*x^2)/(1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
E.g.f.: (649 - 550*x + 1250*x^2)*exp(x). - G. C. Greubel, Sep 14 2016

Extensions

Offset and one entry corrected by R. J. Mathar, Jan 05 2011
Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

A154360 a(n) = 250*n - 180.

Original entry on oeis.org

-180, 70, 320, 570, 820, 1070, 1320, 1570, 1820, 2070, 2320, 2570, 2820, 3070, 3320, 3570, 3820, 4070, 4320, 4570, 4820, 5070, 5320, 5570, 5820, 6070, 6320, 6570, 6820, 7070, 7320, 7570, 7820, 8070, 8320, 8570, 8820, 9070, 9320, 9570, 9820, 10070, 10320
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as A154358(n)^2 - A154355(n)*a(n)^2 = 1. See also the third comment in A154357.

Crossrefs

Programs

Formula

G.f.: -10*(18 - 43*x)/(1-x)^2. - Bruno Berselli, Dec 13 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 21 2012
E.g.f.: 10*(-18 + 25*x)*exp(x). - G. C. Greubel, Sep 15 2016

Extensions

Offset changed and Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

A154356 Primes of the form 25n^2-14n+2 for n >= 0.

Original entry on oeis.org

2, 13, 557, 1129, 1901, 5417, 8761, 10733, 15277, 23593, 30137, 41453, 59341, 74857, 80429, 86201, 92173, 104717, 118061, 179437, 253613, 284729, 306473, 352361, 364333, 414221, 453737, 523597, 598457, 798521, 1068329, 1217933, 1285049
Offset: 1

Views

Author

Vincenzo Librandi, Jan 07 2009

Keywords

Examples

			a(8)=10733 corresponds to n=21, therefore 10733=(3*21-1)^2+(4*21-1)^2=62^2+83^2 (see second comment in A154357). - _Bruno Berselli_, Dec 14 2011
		

Crossrefs

Cf. A154357.

Programs

  • Magma
    [ a: n in [0..400] | IsPrime(a) where a is 25*n^2-14*n+2];
  • Mathematica
    Join[{2},Select[Table[25n^2-14n+2,{n,500}],PrimeQ]] (* Harvey P. Dale, May 15 2011 *)

Extensions

Edited by Robert Hochberg, Jun 21 2010

A334116 a(n) is the least number k greater than n such that the square roots of both k and n have continuous fractions with the same period p and, if p > 1, the same periodic terms except for the last term.

Original entry on oeis.org

1, 5, 8, 4, 10, 12, 32, 15, 9, 17, 40, 20, 74, 33, 24, 16, 26, 39, 1880, 30, 112, 660, 96, 35, 25, 37, 104, 299, 338, 42, 77600, 75, 60, 78, 48, 36, 50, 84, 68, 87, 130, 56, 288968, 468, 350, 3242817, 192, 63, 49, 65, 200, 2726, 1042, 1628, 180, 72, 308, 425, 5880, 95
Offset: 1

Views

Author

Gerhard Kirchner, Apr 14 2020

Keywords

Comments

Note that a(n)=n if n is a square. The square root of a squarefree integer n has a continued fraction of the form [e(0);[e(1),...,e(p)]] with e(p)=2e(0) and e(i)=e(p-i) for 0 < i < p, see reference. The symmetric part [e(1),...,e(p-1)] of the continued fraction [m;[e(1),...,e(p-1), 2m]] will be called the pattern of n. 2 has the empty pattern (sqrt(2)=[1,[2]]), 3 has the pattern [1] (sqrt(3)=[1,[1,2]]) and so on. In this sense, the description of the sequence can be simplified as "Least number greater than n with the same pattern".
It can be can proved (see link) that integers with the same pattern are terms of a quadratic sequence.
An ambiguity has to be fixed: sqrt(2)=[1,[2]] = [1,[2,2]] = [1,[2,2,2]] and so on. We define that the shortest pattern is correct, here it is empty. Comment on the third subsequence (2),6,12,... below: The second term 6 has the pattern [2], but the first term 2 in brackets has the "wrong" pattern, after fixing the ambiguity.

Examples

			1) p=1: f(1)=2, f(2)=a(2)=5, f(3)=a(5)=10, f(4)=a(10)=17,..
sqrt(2)=[1,[2]], sqrt(5)=[2,[4]], sqrt(10)=[3,[6]], sqrt(17)=[4,[8]],..
2) p=2: f(1)=3, f(2)=a(3)=8, f(3)=a(8)=15, f(4)=a(15)=24,..
sqrt(3)=[1,[1,2]], sqrt(8)=[2,[1,4]], sqrt(15)=[3,[1,6]], sqrt(24)=[4,[1,8]],..
3) p=3: f(1)=41, f(2)=a(41)=130, f(3)=a(130)=269,..
sqrt(41)=[6,[2,2,12]], sqrt(130)=[11,[2,2,121]], sqrt(269)=[16,[2,2,256]],..
4) p=4: f(1)=33, f(2)=a(33)=60, f(3)=a(60)=95,..
sqrt(33)=[5,[1,2,1,10]], sqrt(60)=[7,[1,2,1,49]], sqrt(95)=[9,[1,2,1,81]],..
Several subsequences f(k) with f(k+1)=a(f(k)).
k>1 if first term in brackets, k>0 otherwise.
First terms  Period  Formula           Example
1) 2,5,10,17   1  A002522(k)=k^2+1           1
2) 3,8,15,24   2  A005563(k)=(k+1)^2-1       2
3)(2),6,12     2  A002378(k)=k*(k+1)
4) 7,32,75     4  A013656(k)=k*(9*k-2)
5) 11,40,87    2  A147296(k)=k*(9*k+2)
6) 13,74,185   5  A154357(k)=25*k^2-14*k+2
7) (3),14,33   4  A033991(k)=k*(4*k-1)       4
8) (5),18,39   2  A007742(k)=k*(4*k+1)
9) 21,112,275  6  A157265(k)=36*k^2-17*k+2
10)23,96,219   4  A154376(k)=25*k^2-2*k
11)27,104,231  2  A154377(k)=25*k^2+2*k
12)28,299,858  4  A156711(k)=144*k^2-161*k+45
13)29,338,985  5  A156640(k)=169*k^2+140*k+29
14)(8),34,78   4  A154516(k)=9*k^2-k
15)(10),38,84  2  A154517(k)=9*k^2+k
16)(2),41,130  3  A154355(k)=25*k^2-36*k+13  3
17)47,192,435  4  A157362(k)=49*k^2-2*k
		

References

  • Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 3rd ed. 1993, page 428.

Crossrefs

Programs

  • Maxima
    block([nmax: 100],
    /*saves the first nmax terms in the current directory*/
    algebraic: true, local(coeff), showtime: true,
    fl: openw(sconcat("terms",nmax, ".txt")),
    coeff(w,m):=
      block(a: m, p: 0, s: w, vv:[],
       while a<2*m do
        (p: p+1, s: ratsimp(1/(s-floor(s))), a: floor(s),
         if a<2*m then vv: append(vv, [a])),
       j: floor((p-1)/2),
       if mod(p,2)=0 then v: [1,0,vv[j+1]] else v: [0,1,1],
       for i from j thru 1 step(-1) do
        (h: vv[i], u: [v[1]+h*v[3], v[3], 2*h*v[1]+v[2]+h^2*v[3]], v: u),
       return(v)),
       for n from 1 thru nmax do
        (w: sqrt(n), m: floor(w),
         if w=m then  b: n else
          (v: coeff(w,m),  x: v[1], y: v[2], z: v[3], q: mod(z,2),
           if q=0 then (z: z/2, y: y/2) else x: 2*x,
           fr: (x*m+y)/z, m: m+z, fr: fr+x, b: m^2+fr),
          printf( fl, "~d, ", b)),
          close(fl));
    
  • Python
    from sympy import floor, S, sqrt
    def coeff(w,m):
        a, p, s, vv = m, 0, w, []
        while a < 2*m:
            p += 1
            s = S.One/(s-floor(s))
            a = floor(s)
            if a < 2*m:
                vv.append(a)
        j = (p-1)//2
        v = [0,1,1] if p % 2 else [1, 0, vv[j]]
        for i in range(j-1,-1,-1):
            h = vv[i]
            v = [v[0]+h*v[2], v[2], 2*h*v[0]+v[1]+h**2*v[2]]
        return v
    def A334116(n):
        w = sqrt(n)
        m = floor(w)
        if w == m:
            return n
        else:
            x, y, z = coeff(w,m)
            if z % 2:
                x *= 2
            else:
                z //= 2
                y //= 2
            return (m+z)**2+x+(x*m+y)//z # Chai Wah Wu, Sep 30 2021, after Maxima code
Showing 1-7 of 7 results.