cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154355 a(n) = 25*n^2 - 36*n + 13.

Original entry on oeis.org

13, 2, 41, 130, 269, 458, 697, 986, 1325, 1714, 2153, 2642, 3181, 3770, 4409, 5098, 5837, 6626, 7465, 8354, 9293, 10282, 11321, 12410, 13549, 14738, 15977, 17266, 18605, 19994, 21433, 22922, 24461, 26050, 27689, 29378
Offset: 0

Views

Author

Vincenzo Librandi, Jan 07 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as A154358(n)^2 - a(n)*A154360(n)^2 = 1. See also the third comment in A154357.
Numbers of the form (3n-2)^2 + (4n-3)^2. - Bruno Berselli, Dec 12 2011
From Klaus Purath, May 06 2025: (Start)
25*a(n)-1 is a square, and a(n) is the sum of two squares (see FORMULA). There are no squares in this sequence. The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*(5*y)^2 = -1 for any integer n where a(1-n) = A154357(n). The values for k and the solutions x, y can be calculated using the following algorithm: k = sqrt(D*5^2 - 1), x(0) = 1, x(1) = 4*D*5^2 - 1, y(0) = 1, y(1) = 4*D*5^2 - 3. The two recurrences are of the form (4*D*5^2 - 2, -1).
It follows from the above that the terms of this sequence and of A154357 belong to A031396. (End)

Crossrefs

Essentially a duplicate of A007533.

Programs

  • Magma
    [25*n^2-36*n+13: n in [0..40]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    Table[25n^2-36n+13,{n,0,40}]  (* Harvey P. Dale, Apr 02 2011 *)
    LinearRecurrence[{3, -3, 1}, {13, 2, 41}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
  • PARI
    for(n=0, 40, print1(25*n^2 - 36*n + 13", ")); \\ Vincenzo Librandi, Feb 21 2012
    

Formula

a(n) = A007533(n-1), n>0. - R. J. Mathar, Jan 14 2009
G.f.: (13 - 37*x + 74*x^2) / (1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 21 2012
E.g.f.: (13 - 11*x + 25*x^2) * exp(x). - G. C. Greubel, Sep 14 2016
From Klaus Purath, May 06 2025: (Start)
a(n) = (3*n-2)^2 + (4*n-3)^2.
25*a(n) - 1 = (25*n - 18)^2. (End)

Extensions

Offset corrected from R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 12 2011

A154357 a(n) = 25*n^2 - 14*n + 2.

Original entry on oeis.org

2, 13, 74, 185, 346, 557, 818, 1129, 1490, 1901, 2362, 2873, 3434, 4045, 4706, 5417, 6178, 6989, 7850, 8761, 9722, 10733, 11794, 12905, 14066, 15277, 16538, 17849, 19210, 20621, 22082, 23593, 25154, 26765, 28426, 30137, 31898, 33709, 35570, 37481, 39442, 41453, 43514
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - a(n)*A154361(n)^2 = 1.
Numbers of the form (4*n-1)^2 + (3*n-1)^2. - Bruno Berselli, Dec 11 2011
From Bruno Berselli, Dec 13 2011: (Start)
More generally, considering together this sequence and A154355, A154358-A154361, for
r = (1/4)*(1250*(n-1)*(n-2) + 75*(2*n-3)(-1)^n + 321) with n>=0, i.e. the interleaving of A154358 and A154359 (649, 99, 99, 649, 2049, 3699,...)
s = (5/2)*(50*n+3*(-1)^n-75), the interleaving of A154360 and A154361 (-180, -70, 70, 180, 320, 430,...)
t = (1/8)*(50*(n-1)*(n-2) + 3*(2*n-3)*(-1)^n + 13), the interleaving of A154355 and A154357 (13, 2, 2, 13, 41, 74,...)
we verify that r^2 - t*s^2 = 1.
For n even we obtain (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1; for n odd we have the identity shown in the first comment. (End)
sqrt(A154357(n)) for n >= 1 has the continued fraction x; [1 1 1 1 2x] where x = 5n - 2 (the part in [] being repeated). - Robert Israel, May 26 2013
For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [10n-3; {4, 1, 5n-3, 1, 4, 20n-6}] - Magus K. Chu, Sep 16 2022

Crossrefs

Programs

Formula

G.f.: (2 + 7*x + 41*x^2)/(1-x)^3. - R. J. Mathar, Jan 05 2011
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 08 2012
E.g.f.: (2 + 11*x + 25*x^2)*exp(x). - G. C. Greubel, Sep 14 2016

Extensions

One entry and offset corrected by R. J. Mathar, Jan 05 2011
First comment rewritten by Bruno Berselli, Dec 11 2011

A154361 a(n) = 250*n - 70.

Original entry on oeis.org

-70, 180, 430, 680, 930, 1180, 1430, 1680, 1930, 2180, 2430, 2680, 2930, 3180, 3430, 3680, 3930, 4180, 4430, 4680, 4930, 5180, 5430, 5680, 5930, 6180, 6430, 6680, 6930, 7180, 7430, 7680, 7930, 8180, 8430, 8680, 8930, 9180
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 700*n + 99)^2 - (25*n^2 - 14*n + 2)*(250*n - 70)^2 = 1 can be written as A154359(n)^2 - A154357(n)*a(n)^2 = 1. See also the third comment in A154357.

Crossrefs

Programs

Formula

G.f.: -10*(7 - 32*x)/(1-x)^2. - Bruno Berselli, Dec 13 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 21 2012
E.g.f.: 10*(-7 + 25*x)*exp(x). - G. C. Greubel, Sep 15 2016

Extensions

Offset changed and Librandi's comment rewritten by Bruno Berselli, Dec 13 2011

A154360 a(n) = 250*n - 180.

Original entry on oeis.org

-180, 70, 320, 570, 820, 1070, 1320, 1570, 1820, 2070, 2320, 2570, 2820, 3070, 3320, 3570, 3820, 4070, 4320, 4570, 4820, 5070, 5320, 5570, 5820, 6070, 6320, 6570, 6820, 7070, 7320, 7570, 7820, 8070, 8320, 8570, 8820, 9070, 9320, 9570, 9820, 10070, 10320
Offset: 0

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 - 1800*n + 649)^2 - (25*n^2 - 36*n + 13)*(250*n - 180)^2 = 1 can be written as A154358(n)^2 - A154355(n)*a(n)^2 = 1. See also the third comment in A154357.

Crossrefs

Programs

Formula

G.f.: -10*(18 - 43*x)/(1-x)^2. - Bruno Berselli, Dec 13 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 21 2012
E.g.f.: 10*(-18 + 25*x)*exp(x). - G. C. Greubel, Sep 15 2016

Extensions

Offset changed and Librandi's comment rewritten by Bruno Berselli, Dec 13 2011
Showing 1-4 of 4 results.