cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154375 a(n) = 1250*n^2 + 100*n + 1.

Original entry on oeis.org

1351, 5201, 11551, 20401, 31751, 45601, 61951, 80801, 102151, 126001, 152351, 181201, 212551, 246401, 282751, 321601, 362951, 406801, 453151, 502001, 553351, 607201, 663551, 722401, 783751, 847601, 913951, 982801, 1054151, 1128001
Offset: 1

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 + 100*n + 1)^2 - (25*n^2 + 2*n)*(250*n + 10)^2 = 1 can be written as a(n)^2 - A154377(n)*A154379(n)^2 = 1. - Vincenzo Librandi, Jan 30 2012
This is the case s=5 of the identity (2*s^4*n^2 + 4*s^2*n + 1)^2 - (s^2*n^2 + 2*n)*(2*s^3*n + 2*s)^2 = 1. - Bruno Berselli, Jan 30 2012

Crossrefs

Programs

  • Mathematica
    Table[1250n^2+100n+1,{n,30}] (* or *) LinearRecurrence[{3,-3,1},{1351, 5201, 11551},30] (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    a(n)=1250*n^2+100*n+1 \\ Charles R Greathouse IV, Dec 27 2011

Formula

a(1)=1351, a(2)=5201, a(3)=11551, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 25 2011
G.f.: x*(x^2 + 1148*x + 1351)/(1-x)^3. - Vincenzo Librandi, Jan 30 2012
E.g.f.: (1250*x^2 + 1350*x + 1)*exp(x) - 1. - G. C. Greubel, Sep 15 2016

Extensions

Minor corrections by M. F. Hasler, Oct 08 2014

A154379 a(n) = 250*n + 10.

Original entry on oeis.org

260, 510, 760, 1010, 1260, 1510, 1760, 2010, 2260, 2510, 2760, 3010, 3260, 3510, 3760, 4010, 4260, 4510, 4760, 5010, 5260, 5510, 5760, 6010, 6260, 6510, 6760, 7010, 7260, 7510, 7760, 8010, 8260, 8510, 8760, 9010, 9260, 9510, 9760, 10010, 10260
Offset: 1

Views

Author

Vincenzo Librandi, Jan 08 2009

Keywords

Comments

The identity (1250*n^2 + 100*n + 1)^2 - (25*n^2 + 2*n)*(250*n + 10)^2 = 1 can be written as A154375(n)^2 - A154377(n)*a(n)^2 = 1 (see also the second comment in A154375). - Vincenzo Librandi, Jan 30 2012

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 30 2012
G.f.: 10*x*(26 - x)/(1-x)^2. - Vincenzo Librandi, Jan 30 2012 [corrected by Georg Fischer, May 12 2019]
E.g.f.: 10*( (25*x + 1)*exp(x) - 1). - G. C. Greubel, Sep 15 2016

Extensions

Definition corrected by Paolo P. Lava, Jan 14 2009

A334116 a(n) is the least number k greater than n such that the square roots of both k and n have continuous fractions with the same period p and, if p > 1, the same periodic terms except for the last term.

Original entry on oeis.org

1, 5, 8, 4, 10, 12, 32, 15, 9, 17, 40, 20, 74, 33, 24, 16, 26, 39, 1880, 30, 112, 660, 96, 35, 25, 37, 104, 299, 338, 42, 77600, 75, 60, 78, 48, 36, 50, 84, 68, 87, 130, 56, 288968, 468, 350, 3242817, 192, 63, 49, 65, 200, 2726, 1042, 1628, 180, 72, 308, 425, 5880, 95
Offset: 1

Views

Author

Gerhard Kirchner, Apr 14 2020

Keywords

Comments

Note that a(n)=n if n is a square. The square root of a squarefree integer n has a continued fraction of the form [e(0);[e(1),...,e(p)]] with e(p)=2e(0) and e(i)=e(p-i) for 0 < i < p, see reference. The symmetric part [e(1),...,e(p-1)] of the continued fraction [m;[e(1),...,e(p-1), 2m]] will be called the pattern of n. 2 has the empty pattern (sqrt(2)=[1,[2]]), 3 has the pattern [1] (sqrt(3)=[1,[1,2]]) and so on. In this sense, the description of the sequence can be simplified as "Least number greater than n with the same pattern".
It can be can proved (see link) that integers with the same pattern are terms of a quadratic sequence.
An ambiguity has to be fixed: sqrt(2)=[1,[2]] = [1,[2,2]] = [1,[2,2,2]] and so on. We define that the shortest pattern is correct, here it is empty. Comment on the third subsequence (2),6,12,... below: The second term 6 has the pattern [2], but the first term 2 in brackets has the "wrong" pattern, after fixing the ambiguity.

Examples

			1) p=1: f(1)=2, f(2)=a(2)=5, f(3)=a(5)=10, f(4)=a(10)=17,..
sqrt(2)=[1,[2]], sqrt(5)=[2,[4]], sqrt(10)=[3,[6]], sqrt(17)=[4,[8]],..
2) p=2: f(1)=3, f(2)=a(3)=8, f(3)=a(8)=15, f(4)=a(15)=24,..
sqrt(3)=[1,[1,2]], sqrt(8)=[2,[1,4]], sqrt(15)=[3,[1,6]], sqrt(24)=[4,[1,8]],..
3) p=3: f(1)=41, f(2)=a(41)=130, f(3)=a(130)=269,..
sqrt(41)=[6,[2,2,12]], sqrt(130)=[11,[2,2,121]], sqrt(269)=[16,[2,2,256]],..
4) p=4: f(1)=33, f(2)=a(33)=60, f(3)=a(60)=95,..
sqrt(33)=[5,[1,2,1,10]], sqrt(60)=[7,[1,2,1,49]], sqrt(95)=[9,[1,2,1,81]],..
Several subsequences f(k) with f(k+1)=a(f(k)).
k>1 if first term in brackets, k>0 otherwise.
First terms  Period  Formula           Example
1) 2,5,10,17   1  A002522(k)=k^2+1           1
2) 3,8,15,24   2  A005563(k)=(k+1)^2-1       2
3)(2),6,12     2  A002378(k)=k*(k+1)
4) 7,32,75     4  A013656(k)=k*(9*k-2)
5) 11,40,87    2  A147296(k)=k*(9*k+2)
6) 13,74,185   5  A154357(k)=25*k^2-14*k+2
7) (3),14,33   4  A033991(k)=k*(4*k-1)       4
8) (5),18,39   2  A007742(k)=k*(4*k+1)
9) 21,112,275  6  A157265(k)=36*k^2-17*k+2
10)23,96,219   4  A154376(k)=25*k^2-2*k
11)27,104,231  2  A154377(k)=25*k^2+2*k
12)28,299,858  4  A156711(k)=144*k^2-161*k+45
13)29,338,985  5  A156640(k)=169*k^2+140*k+29
14)(8),34,78   4  A154516(k)=9*k^2-k
15)(10),38,84  2  A154517(k)=9*k^2+k
16)(2),41,130  3  A154355(k)=25*k^2-36*k+13  3
17)47,192,435  4  A157362(k)=49*k^2-2*k
		

References

  • Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 3rd ed. 1993, page 428.

Crossrefs

Programs

  • Maxima
    block([nmax: 100],
    /*saves the first nmax terms in the current directory*/
    algebraic: true, local(coeff), showtime: true,
    fl: openw(sconcat("terms",nmax, ".txt")),
    coeff(w,m):=
      block(a: m, p: 0, s: w, vv:[],
       while a<2*m do
        (p: p+1, s: ratsimp(1/(s-floor(s))), a: floor(s),
         if a<2*m then vv: append(vv, [a])),
       j: floor((p-1)/2),
       if mod(p,2)=0 then v: [1,0,vv[j+1]] else v: [0,1,1],
       for i from j thru 1 step(-1) do
        (h: vv[i], u: [v[1]+h*v[3], v[3], 2*h*v[1]+v[2]+h^2*v[3]], v: u),
       return(v)),
       for n from 1 thru nmax do
        (w: sqrt(n), m: floor(w),
         if w=m then  b: n else
          (v: coeff(w,m),  x: v[1], y: v[2], z: v[3], q: mod(z,2),
           if q=0 then (z: z/2, y: y/2) else x: 2*x,
           fr: (x*m+y)/z, m: m+z, fr: fr+x, b: m^2+fr),
          printf( fl, "~d, ", b)),
          close(fl));
    
  • Python
    from sympy import floor, S, sqrt
    def coeff(w,m):
        a, p, s, vv = m, 0, w, []
        while a < 2*m:
            p += 1
            s = S.One/(s-floor(s))
            a = floor(s)
            if a < 2*m:
                vv.append(a)
        j = (p-1)//2
        v = [0,1,1] if p % 2 else [1, 0, vv[j]]
        for i in range(j-1,-1,-1):
            h = vv[i]
            v = [v[0]+h*v[2], v[2], 2*h*v[0]+v[1]+h**2*v[2]]
        return v
    def A334116(n):
        w = sqrt(n)
        m = floor(w)
        if w == m:
            return n
        else:
            x, y, z = coeff(w,m)
            if z % 2:
                x *= 2
            else:
                z //= 2
                y //= 2
            return (m+z)**2+x+(x*m+y)//z # Chai Wah Wu, Sep 30 2021, after Maxima code
Showing 1-3 of 3 results.