A154560 a(n) = (n+3)^2*n/2 + 1.
1, 9, 26, 55, 99, 161, 244, 351, 485, 649, 846, 1079, 1351, 1665, 2024, 2431, 2889, 3401, 3970, 4599, 5291, 6049, 6876, 7775, 8749, 9801, 10934, 12151, 13455, 14849, 16336, 17919, 19601, 21385, 23274, 25271, 27379, 29601, 31940, 34399, 36981
Offset: 0
Examples
a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
-
PARI
{for(n=0,40,print1((n+3)^2*n/2+1,","))}
Formula
G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
a(n) = ((n+2-i)^3+(n+2+i)^3)/4, where i is the imaginary unit. - Nicolas Bělohoubek, Jul 03 2025
Comments