cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154560 a(n) = (n+3)^2*n/2 + 1.

Original entry on oeis.org

1, 9, 26, 55, 99, 161, 244, 351, 485, 649, 846, 1079, 1351, 1665, 2024, 2431, 2889, 3401, 3970, 4599, 5291, 6049, 6876, 7775, 8749, 9801, 10934, 12151, 13455, 14849, 16336, 17919, 19601, 21385, 23274, 25271, 27379, 29601, 31940, 34399, 36981
Offset: 0

Views

Author

Klaus Brockhaus, Jan 12 2009

Keywords

Comments

8*a(n) is the y value of a solution (x, y) to the Diophantine equation 2*x^3+12*x^2 = y^2. The corresponding x value is A152811(n+1).

Examples

			a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
		

Crossrefs

Cf. A058794 (row 3 of A007754), A117560 (n*(n^2-1)/2-1), A144129 (4*n^3-3*n), A141530, A152811 (2*(n^2+2*n-2)).

Programs

  • Magma
    [(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
  • PARI
    {for(n=0,40,print1((n+3)^2*n/2+1,","))}
    

Formula

G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
a(n) = ((n+2-i)^3+(n+2+i)^3)/4, where i is the imaginary unit. - Nicolas Bělohoubek, Jul 03 2025