cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A154672 Numbers n = 5*k^2 such that n - 1 and n + 1 are (twin) primes (thus k=6*m).

Original entry on oeis.org

180, 1620, 8820, 35280, 87120, 151380, 302580, 380880, 691920, 737280, 808020, 1393920, 5020020, 5767380, 7712820, 9604980, 10281780, 11160180, 12450420, 12736080, 14723280, 15138000, 17186580, 17860500, 18663120, 18779220, 19129680, 21300480
Offset: 1

Views

Author

Keywords

Comments

Original definition: Averages of twin prime pairs n such that n*5 and n/5 are squares.
Obviously, n*5 is a square iff n/5 is a square, say k^2. But n=5k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=5*36*m^2. - M. F. Hasler, Apr 11 2009

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*5)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}];lst (*...and/or...*) lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/5)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,10!,6}];lst
  • PARI
    forstep(k=0,1e4,6, isprime(k^2*5+1) & isprime(k^2*5-1) & print1(k^2*5,",")) \\ M. F. Hasler, Apr 11 2009

Formula

A154672 = 5*A000290 intersect A014574 = 180*A000290 intersect A014574. - M. F. Hasler, Apr 11 2009

Extensions

Edited and extended by M. F. Hasler, Apr 11 2009

A154676 Numbers n = 103*k^2 such that (n-1,n+1) is a twin prime pair (thus k = 6*m).

Original entry on oeis.org

2317500, 12047292, 26163648, 43250112, 47347452, 61704828, 168228252, 333720000, 351755712, 426127068, 513127872, 840143808, 979638768, 998790588, 1089276912, 1330434108, 1357220700, 1388809152, 1694467008, 1927570428, 1986835392, 2035992348, 2136108348, 2858437872, 3070594800, 3241626300, 3903322608
Offset: 1

Views

Author

Keywords

Comments

Original definition: Averages of twin prime pairs n such that n*103 and n/103 are squares.
All terms are of the form 3708*k^2. - Zak Seidov, Jan 15 2009
Obviously n*103 is a square iff n/103 is a square, say k^2. But n=103k^2 can't be the average of a twin prime pair unless it's a multiple of 6, thus k=6m and n=103*36*m^2. - M. F. Hasler, Apr 11 2009

Crossrefs

Programs

  • Maple
    select(t -> isprime(t+1) and isprime(t-1), [seq(3708*i^2, i=1..2000)]); # Robert Israel, Mar 13 2019
  • Mathematica
    lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst (*...and/or...*) lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/103)^(1/2); If[Floor[s]==s,AppendTo[lst,n]]],{n,9!,2*11!,6}]; lst
    Select[3708*Range[1200]^2,AllTrue[#+{1,-1},PrimeQ]&] (* Harvey P. Dale, May 15 2025 *)
  • PARI
    forstep(k=0,1e4,6, isprime(k^2*103+1) & isprime(k^2*103-1) & print1(k^2*103,",")) \\ M. F. Hasler, Apr 11 2009

Extensions

Edited and extended by M. F. Hasler, Apr 11 2009

A154675 Averages of twin prime pairs k such that k*13 and k/13 are squares.

Original entry on oeis.org

1872, 7488, 11700, 825552, 990288, 1123668, 1629108, 3146832, 3302208, 4680000, 6627348, 7667712, 8783892, 15502032, 16017300, 16365492, 17252352, 25407252, 32617728, 42401268, 42966612, 54100800, 66163968, 71182800, 73019700
Offset: 1

Views

Author

Keywords

Comments

Terms of this sequence must be of the form 13(6m)^2, the values for m are listed in A154775. - M. F. Hasler, Jan 15 2009

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*13)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst
    (* ... and/or ... *)
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/13)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst
    Select[13*Range[10^3]^2, And @@ PrimeQ[# + {-1, 1}] &] (* Amiram Eldar, Dec 25 2019 *)
  • PARI
    for(i=1,499, isprime(468*i^2+1) && isprime(468*i^2-1) && print1(468*i^2",")) \\ M. F. Hasler, Jan 15 2009

Formula

a(n) = 468 A154775(n)^2 - M. F. Hasler, Jan 15 2009

Extensions

More terms from M. F. Hasler, Jan 15 2009

A154774 Numbers n such that 9900n^2 is the average of a twin prime pair.

Original entry on oeis.org

10, 14, 15, 25, 60, 74, 76, 87, 127, 129, 130, 140, 171, 196, 207, 224, 259, 263, 302, 314, 315, 319, 333, 337, 377, 389, 451, 454, 470, 491, 508, 518, 549, 568, 574, 589, 592, 624, 629, 636, 690, 696, 729, 748, 753, 769, 770, 771, 781, 791, 802, 833, 844
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2009

Keywords

Comments

Inspired by Zak Seidov's post to the SeqFan list, cf. link: This yields A154674 as 9900 a(n)^2. Indeed, if N/11 is a square, then N=11 m^2 and this can't be the average of a twin prime pair unless m=30a (considering N+1 mod 2,3,5 and N-1 mod 5).

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],AllTrue[9900#^2+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 19 2019 *)
  • PARI
    for(i=1,999, isprime(9900*i^2+1) & isprime(9900*i^2-1) & print1(i","))

Formula

a(n) = sqrt(A154674(n)/9900).
Showing 1-4 of 4 results.