cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154674 Averages of twin prime pairs k such that k*11 and k/11 are squares.

Original entry on oeis.org

990000, 1940400, 2227500, 6187500, 35640000, 54212400, 57182400, 74933100, 159677100, 164745900, 167310000, 194040000, 289485900, 380318400, 424205100, 496742400, 664101900, 684773100, 902919600, 976100400, 982327500, 1007433900
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n*11)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst...and/or... lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1],s=(n/11)^(1/2);If[Floor[s]==s,AppendTo[lst,n]]],{n,6,11!,6}];lst
    Select[11*Range[10^4]^2, And @@ PrimeQ[# + {-1, 1}] &] (* Amiram Eldar, Dec 25 2019 *)
  • PARI
    for(i=1,999, isprime(9900*i^2+1) && isprime(9900*i^2-1) && print1(9900*i^2",")) \\ M. F. Hasler, Jan 15 2009

Formula

a(n) = 9900*A154774(n)^2. - M. F. Hasler, Jan 15 2009

Extensions

More terms from M. F. Hasler, Jan 15 2009

A154775 Numbers k such that 13*(6*k)^2 is the average of a twin prime pair.

Original entry on oeis.org

2, 4, 5, 42, 46, 49, 59, 82, 84, 100, 119, 128, 137, 182, 185, 187, 192, 233, 264, 301, 303, 340, 376, 390, 395, 422, 438, 446, 471, 472, 494, 518, 527, 570, 598, 609, 611, 633, 667, 688, 714, 716, 726, 728, 733, 744, 831, 837, 865, 875, 896, 926, 940, 948
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2009

Keywords

Comments

Inspired by Zak Seidov's post to the SeqFan list, cf. link: This yields A154675 as 468 a(n)^2. Indeed, if N/13 is a square, then N=13 k^2 and this can't be the average of a twin prime pair unless k=6m.

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{av=468n^2},PrimeQ[av-1]&&PrimeQ[av+1]]; Select[Range[1000],okQ] (* Harvey P. Dale, Jan 21 2011 *)
  • PARI
    for(i=1,999, isprime(468*i^2+1) & isprime(468*i^2-1) & print1(i","))

Formula

a(n) = sqrt(A154675(n)/468).
Showing 1-2 of 2 results.