A154732 Integers k such that (k^3 + k^2) -+ 1 are primes.
2, 5, 9, 11, 12, 26, 44, 47, 62, 69, 71, 89, 125, 140, 147, 179, 219, 254, 264, 285, 294, 312, 317, 326, 341, 344, 384, 407, 461, 495, 659, 680, 714, 740, 837, 845, 861, 866, 867, 957, 989, 1071, 1079, 1152, 1215, 1310, 1437, 1481, 1499, 1511, 1530, 1577
Offset: 1
Examples
2^3 + 2^2 = 12 -+ 1 = 11 and 13 (both prime).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..5*10^3] |IsPrime(n^3+n^2-1) and IsPrime(n^3+n^2+1)]; // Vincenzo Librandi, Dec 26 2015
-
Maple
select(k -> andmap(isprime,[k^3+k^2-1,k^3+k^2+1]), [$1..10000]); # Robert Israel, Jan 07 2025
-
Mathematica
lst={};Do[k=n^3+n^2;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,n]],{n,8!}];lst Select[Range[3000], PrimeQ[#^3 + #^2 - 1] && PrimeQ[#^3 + #^2 + 1] &] (* Vincenzo Librandi, Dec 26 2015 *)
-
PARI
isok(n) = isprime(n^3+n^2+1) && isprime(n^3+n^2-1); \\ Michel Marcus, Dec 27 2015