cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154734 Define k(0) = 2 and k(m) = m^2-k(m-1) for m >= 1. This is a list of those terms k(m) for which k(m)+1 and k(m)-1 are both in A008578 (primes including 1).

Original entry on oeis.org

2, 4, 12, 138, 822, 2082, 3918, 21738, 39342, 62130, 70878, 106032, 117372, 129288, 135462, 182712, 512580, 524802, 575130, 682698, 769422, 799482, 893118, 1008912, 1026030, 1043292, 1828830, 2368578, 2447580, 3247428, 3278082, 3465030, 4022868, 4056978
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) local k; k := n*(n - 1)/2 - 2*(-1)^n:
    if k = 2 or isprime(k - 1) and isprime(k + 1) then k else NULL fi end:
    seq(a(n), n = 1..1000);  # Peter Luschny, Jul 14 2022
  • Mathematica
    k=2;lst={k};Do[k=n^2-k;If[PrimeQ[k-1]&&PrimeQ[k+1],AppendTo[lst,k]],{n,8!}];lst
  • PARI
    a154734(upto,k0=2) = {my(k=k0); print1(k,", "); for(n=1, oo, my(kk=n^2-k);if(isprime(k-1) && isprime(k+1), print1(k,", ")); k=kk; if(k>upto, break))};
    a154734(5000000) \\ Hugo Pfoertner, Jul 14 2022

Formula

k(n) = n*(n+1)/2+2*(-1)^n. - Peter Luschny, Jul 14 2022

Extensions

Better name from Pontus von Brömssen, Jul 14 2022