A154740 Continued fraction for sqrt(1 - 1/sqrt(2)), the abscissa of the point of bisection of the arc of the unit lemniscate (x^2 + y^2)^2 = x^2 - y^2 in the first quadrant.
0, 1, 1, 5, 1, 1, 3, 6, 1, 3, 3, 10, 10, 1, 1, 1, 5, 2, 3, 1, 1, 3, 6, 1, 8, 74, 2, 1, 2, 4, 2, 4, 3, 5, 9, 4, 3, 1, 1, 1, 2, 1, 17, 6, 1, 2, 12, 1, 1, 1, 2, 1, 24, 1, 2, 1, 2, 9, 989, 2, 13, 1, 5, 1, 1, 1, 64, 2, 2, 1, 1, 9, 1, 3, 1, 1, 1, 2, 3, 11, 2, 3, 1
Offset: 0
Examples
Sqrt(1 - 1/sqrt(2)) = 0.541196100146196984399723205366... = [0; 1, 1, 5, 1, 1, 3, 6, 1, 3, 3, 10, 10, ...].
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
ContinuedFraction(Sqrt(1 - 1/Sqrt(2))); // G. C. Greubel, Jan 27 2018
-
Mathematica
nmax = 1000; ContinuedFraction[ Sqrt[ 1 - 1/Sqrt[2] ], nmax + 1]
-
PARI
contfrac(sqrt(1 - 1/sqrt(2))) \\ Michel Marcus, Dec 09 2016