cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A154809 Numbers whose binary expansion is not palindromic.

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 88
Offset: 1

Views

Author

Omar E. Pol, Jan 24 2009

Keywords

Comments

Complement of A006995.
The (a(n)-n+1)-th binary palindrome equals the greatest binary palindrome <= a(n). The corresponding formula identity is: A006995(a(n)-n+1)=A206913(a(n)). - Hieronymus Fischer, Mar 18 2012
A145799(a(n)) < a(n). - Reinhard Zumkeller, Sep 24 2015

Examples

			a(1)=2, since 2 = 10_2 is not binary palindromic.
		

Crossrefs

Programs

  • Haskell
    a154809 n = a154809_list !! (n-1)
    a154809_list = filter ((== 0) . a178225) [0..]
    
  • Magma
    [n: n in [0..600] | not (Intseq(n, 2) eq Reverse(Intseq(n, 2)))]; // Vincenzo Librandi, Jul 05 2015
    
  • Maple
    ispali:= proc(n) local L;
    L:= convert(n,base,2);
    ListTools:-Reverse(L)=L
    end proc:
    remove(ispali, [$1..1000]); # Robert Israel, Jul 05 2015
  • Mathematica
    palQ[n_Integer, base_Integer]:=Module[{idn=IntegerDigits[n, base]}, idn==Reverse[idn]]; Select[Range[1000], ! palQ[#, 2] &] (* Vincenzo Librandi, Jul 05 2015 *)
  • PARI
    isok(n) = binary(n) != Vecrev(binary(n)); \\ Michel Marcus, Jul 05 2015
    
  • Python
    def A154809(n):
        def f(x): return n+(x>>(l:=x.bit_length())-(k:=l+1>>1))-(int(bin(x)[k+1:1:-1],2)>(x&(1<Chai Wah Wu, Jul 24 2024

Formula

A030101(n) != n. - David W. Wilson, Jun 09 2009
A178225(a(n)) = 0. - Reinhard Zumkeller, Oct 21 2011
From Hieronymus Fischer, Feb 19 2012 and Mar 18 2012: (Start)
Inversion formula: If d is any number from this sequence, then the index number n for which a(n)=d can be calculated by n=d+1-A206915(A206913(d)).
Explicitly: Let p=A206913(d), m=floor(log_2(p)) and p>2, then: a(n)=d+1+(((5-(-1)^m)/2) + sum(k=1...floor(m/2)|(floor(p/2^k) mod 2)/2^k))*2^floor(m/2).
Example 1: d=1000, A206913(d)=975, A206915(975)=62, hence n=1001-62=939.
Example 2: d=10^6, A206913(d)=999471, A206915(999471)=2000, hence n=1000001-2000=998001.
Recursion formulas:
a(n+1)=a(n)+1+A178225(a(n)+1)
Also:
Case 1: a(n+1)=a(n)+2, if A206914(a(n))=a(n)+1;
Case 2: a(n+1)=a(n)+1, else.
Also:
Case 1: a(n+1)=a(n)+1, if A206914(a(n))>a(n)+1;
Case 2: a(n+1)=a(n)+2, else.
Iterative calculation formula:
Let f(0):=n+1, f(j):=n-1+A206915(A206913(f(j-1)) for j>0; then a(n)=f(j), if f(j)=f(j-1). The number of necessary steps is typically <4 and is limited by O(log_2(n)).
Example 3: n=1000, f(0)=1001, f(1)=1061, f(2)=1064=f(3), hence a(1000)=1064.
Example 4: n=10^6, f(0)=10^6+1, f(1)=1001999, f(2)=1002001=f(3), hence a(10^6)=1002001.
Formula identity:
a(n) = n-1 + A206915(A206913(a(n))).
(End)

Extensions

Extended by Ray Chandler, Mar 14 2010
Showing 1-1 of 1 results.