A119983
Number of ways to partition 1 into reduced fractions i/j with j <= n.
Original entry on oeis.org
1, 2, 4, 7, 13, 22, 36, 59, 107, 189, 244, 494, 594, 1063, 3276, 5508, 5804, 12427, 12916, 42411, 131773, 167588, 168842, 428013, 839368, 1015502, 1968162, 5787287, 5791851, 15163759, 15170600, 28838713, 75983560, 82753548, 486356263, 1158442727, 1158464363
Offset: 1
a(3) = 4; 1 = 1/1 = 1/2 + 1/2 = 2/3 + 1/3 = 1/3 + 1/3 + 1/3.
-
Farey[n_] := Union@ Flatten@ Table[a/b, {b, n}, {a, b}]; f[n_] := Length@ IntegerPartitions[1, All, Farey@ n]; Array[f, 27] (* Robert G. Wilson v, Aug 30 2010 *)
A154887
Number of ways to partition n into distinct reduced fractions i/j with j <= n.
Original entry on oeis.org
1, 2, 11, 71, 838, 7915, 181443, 3529287, 130501170, 4118232210, 269279551654, 9556917233108, 1003141976524301, 74252913818290142, 14979717449141067931, 1451159432555957095630, 363482056748832080145666, 28348494499719127795555178, 10422254792015005991605309232
Offset: 1
a(3) = #{3, 8/3+1/3, 5/2+1/2, 7/3+2/3, 2+1, 2+2/3+1/3, 5/3+4/3, 5/3+1+1/3, 3/2+1+1/2, 3/2+2/3+1/2+1/3, 4/3+1+2/3} = 11. - corrected by _Reinhard Zumkeller_, Feb 02 2009
A290474
Number of fractional partitions of n where each element of a partition is a rational number r/s such that r < s, s <= n, and gcd(r,s) = 1.
Original entry on oeis.org
1, 0, 1, 12, 135, 4477, 100160, 8663934, 485380025, 80730951180, 10180011676356, 4126137351376215, 563950787766342780, 456369006693283278869, 200330760220853808357439, 335435016971402890883460861, 197675615401466868237710861644, 561969529551274362018496511765678
Offset: 0
For n=3, the number of partitions is equal to the number of nonnegative integer solutions for the equation: (1/2)*x_1 + (1/3)*x_2 + (2/3)*x_3 = 3. The set S of solutions is {[0,1,4], [0,3,3], [0,5,2], [0,7,1], [0,9,0], [2,0,3], [2,2,2], [2,4,1], [2,6,0], [4,1,1], [4,3,0], [6,0,0]}. Therefore, |S| = a(3) = 12.
-
s(v, n, t) = {if(t==#v, f = n\v[t]; v[t]*f == n, sum(i=0, n\v[t], s(v, n-v[t]*i, t+1)))}
a(n) = {if(n<=2, return(n-1)); my(fractions = List(), q = 0); for(i=2, n, for(j=1, i-1, if(gcd(i, j)==1, listput(fractions, j/i)))); s(fractions, n, 1)} \\ David A. Corneth, Aug 03 2017
Showing 1-3 of 3 results.
Comments