A154921 Triangle read by rows, T(n, k) = binomial(n, k) * Sum_{j=0..n-k} E(n-k, j)*2^j, where E(n, k) are the Eulerian numbers A173018(n, k), for 0 <= k <= n.
1, 1, 1, 3, 2, 1, 13, 9, 3, 1, 75, 52, 18, 4, 1, 541, 375, 130, 30, 5, 1, 4683, 3246, 1125, 260, 45, 6, 1, 47293, 32781, 11361, 2625, 455, 63, 7, 1, 545835, 378344, 131124, 30296, 5250, 728, 84, 8, 1, 7087261, 4912515, 1702548, 393372, 68166, 9450, 1092, 108, 9, 1
Offset: 0
Examples
From _Peter Bala_, Jul 01 2009: (Start) Triangle T(n, k) begins: n\k| 0 1 2 3 4 5 6 ============================================== 0 | 1 1 | 1 1 2 | 3 2 1 3 | 13 9 3 1 4 | 75 52 18 4 1 5 | 541 375 130 30 5 1 6 | 4683 3246 1125 260 45 6 1 ... (End) From _Mats Granvik_, Aug 11 2009: (Start) Row 4 equals 75,52,18,4,1 because permanents of: 1,0,0,0,1 1,0,0,0,0 1,0,0,0,0 1,0,0,0,0 1,0,0,0,0 1,1,0,0,0 1,1,0,0,1 1,1,0,0,0 1,1,0,0,0 1,1,0,0,0 1,2,1,0,0 1,2,1,0,0 1,2,1,0,1 1,2,1,0,0 1,2,1,0,0 1,3,3,1,0 1,3,3,1,0 1,3,3,1,0 1,3,3,1,1 1,3,3,1,0 1,4,6,4,0 1,4,6,4,0 1,4,6,4,0 1,4,6,4,0 1,4,6,4,1 are: 75 52 18 4 1 (End)
References
- Murray R. Spiegel, Mathematical handbook, Schaum's Outlines, p. 111.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- R. B. Nelsen, Problem E3062, Amer. Math. Monthly, Vol. 94, No. 4 (Apr., 1987), 376-377.
- R. B. Nelsen and H. Schmidt, Jr., Chains in Power Sets, Mathematics Magazine, Vol. 64, No. 1 (Feb., 1991), 23-31.
Crossrefs
Programs
-
Maple
A154921_row := proc(n) local i,p; p := proc(n,x) option remember; local k; if n = 0 then 1 else add(p(k,0)*binomial(n,k)*(1+x^(n-k)),k=0..n-1) fi end: seq(coeff(p(n,x),x,i),i=0..n) end: for n from 0 to 5 do A154921_row(n) od; # Peter Luschny, Jul 15 2012 T := (n,k) -> binomial(n,k)*add(combinat:-eulerian1(n-k,j)*2^j, j=0..n-k): seq(print(seq(T(n,k), k=0..n)),n=0..6); # Peter Luschny, Feb 07 2015 # third Maple program: b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=1..n)) end: T:= (n, k)-> n!/k! *b(n-k): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Feb 03 2019 # fourth Maple program: p := proc(n, m) option remember; if n = 0 then 1 else (m + x)*p(n - 1, m) + (m + 1)*p(n - 1, m + 1) fi end: row := n -> local k; seq(coeff(p(n, 0), x, k), k = 0..n): for n from 0 to 6 do row(n) od; # Peter Luschny, Jun 23 2023
-
Mathematica
nn = 8; a = Exp[x] - 1; Map[Select[#, # > 0 &] &, Transpose[ Table[Range[0, nn]! CoefficientList[ Series[x^n/n!/(1 - a), {x, 0, nn}], x], {n, 0, nn}]]] // Grid (* Geoffrey Critzer, Jul 22 2013 *) E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n - k) E1[n - 1, k - 1] + (k + 1) E1[n - 1, k]; T[n_, k_] := Binomial[n, k] Sum[E1[n - k, j] 2^j, {j, 0, n - k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
-
Sage
@CachedFunction def Poly(n, x): return 1 if n == 0 else add(Poly(k,0)*binomial(n,k)*(x^(n-k)+1) for k in range(n)) R = PolynomialRing(ZZ, 'x') for n in (0..6): print(R(Poly(n,x)).list()) # Peter Luschny, Jul 15 2012
Formula
From Peter Bala, Jul 01 2009: (Start)
TABLE ENTRIES
(1) T(n,k) = binomial(n,k)*A000670(n-k).
GENERATING FUNCTION
(2) exp(x*t)/(2-exp(t)) = 1 + (1+x)*t + (3+2*x+x^2)*t^2/2! + ....
PROPERTIES OF THE ROW POLYNOMIALS
The row generating polynomials R_n(x) form an Appell sequence. They appear in the study of the poset of power sets [Nelsen and Schmidt].
The first few values are R_0(x) = 1, R_1(x) = 1+x, R_2(x) = 3+2*x+x^2 and R_3(x) = 13+9*x+3*x^2+x^3.
The row polynomials may be recursively computed by means of
(3) R_n(x) = x^n + Sum_{k = 0..n-1} binomial(n,k)*R_k(x).
Explicit formulas include
(4) R_n(x) = (1/2)*Sum_{k >= 0} (1/2)^k*(x+k)^n,
(5) R_n(x) = Sum_{j = 0..n} Sum_{k = 0..j} (-1)^(j-k)*binomial(j,k) *(x+k)^n,
and
(6) R_n(x) = Sum_{j = 0..n} Sum_{k = j..n} k!*Stirling2(n,k) *binomial(x,k-j).
SUMS OF POWERS OF INTEGERS
The row polynomials satisfy the difference equation
(7) 2*R_m(x) - R_m(x+1) = x^m,
which easily leads to the evaluation of the weighted sums of powers of integers
(8) Sum_{k = 1..n-1} (1/2)^k*k^m = 2*R_m(0) - (1/2)^(n-1)*R_m(n).
For example, m = 2 gives
(9) Sum_{k = 1..n-1} (1/2)^k*k^2 = 6 - (1/2)^(n-1)*(n^2+2*n+3).
More generally we have
(10) Sum_{k=0..n-1} (1/2)^k*(x+k)^m = 2*R_m(x) - (1/2)^(n-1)*R_m(x+n).
RELATIONS WITH OTHER SEQUENCES
Sequences in the database given by particular values of the row polynomials are
(11) A000670(n) = R_n(0)
(12) A052841(n) = R_n(-1)
(13) A000629(n) = R_n(1)
(14) A007047(n) = R_n(2)
(15) A080253(n) = 2^n*R_n(1/2).
This last result is the particular case (x = 0) of the result that the polynomials 2^n*R_n(1/2+x/2) are the row generating polynomials for A162313.
The above formulas should be compared with those for A162312. (End)
From Peter Luschny, Jul 15 2012: (Start)
(16) A151919(n) = R_n(1/3)*3^n*(-1)^n
(17) A052882(n) = [x^1] R_n(x)
(18) A045943(n) = [x^(n-1)] R_n+1(x)
(19) A099880(n) = [x^n] R_2n(x). (End)
The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1} binomial(n,k)*p{k}(0)*(1+x^(n-k)). - Peter Luschny, Jul 15 2012
Extensions
New name by Peter Luschny, Feb 07 2015
Comments