A154987 Triangle read by rows: T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n!/k!)*(2*(n + k) - 1).
-2, 4, 4, 13, 20, 13, 41, 69, 69, 41, 183, 268, 264, 268, 183, 1099, 1405, 1080, 1080, 1405, 1099, 7943, 9486, 5970, 4080, 5970, 9486, 7943, 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547, 604831, 685672, 384552, 149520, 77280, 149520, 384552, 685672, 604831
Offset: 0
Examples
-2; 4, 4; 13, 20, 13; 41, 69, 69, 41; 183, 268, 264, 268, 183; 1099, 1405, 1080, 1080, 1405, 1099; 7943, 9486, 5970, 4080, 5970, 9486, 7943; 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Maple
t:= proc(n,k) option remember; ## simplified t; 2*(n+k-1/2)*(n!/k!); end proc: A154987:= proc(n,k) ## n >= 0 and k = 0 .. n t(n,k) + t(n,n-k) end proc: # Yu-Sheng Chang, Apr 13 2020
-
Mathematica
(* First program *) t[n_, k_]:= 2*n!*Gamma[n+k+1/2]/(k!*Gamma[n+k-1/2]); T[n_, k_]:= t[n, k] + t[n,n-k]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* Second Program *) T[n_, k_]:= Binomial[n, k]*((n-k)!*(2*n+2*k-1) + k!*(4*n-2*k-1)); Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 28 2020 *)
-
Sage
def T(n, k): return binomial(n, k)*(factorial(n-k)*(2*n+2*k-1) + factorial(k)*(4*n-2*k-1)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 28 2020
Formula
T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*n!*Gamma(n + k + 1/2)/(k!*Gamma(n + k - 1/2)).
T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n+k-1/2)*(n!/k!). - Yu-Sheng Chang, Apr 13 2020
From G. C. Greubel, May 28 2020: (Start)
T(n,k) = binomial(n,k)*( (2*n+2*k-1)*(n-k)! + (4*n-2*k-1)*k! ).
T(n,n-k) = T(n,k), for k >= 0.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*n!*e_{n-1}(1) ), where e_{n}(x) is the finite exponential function = Sum_{k=0..n} x^k/k!.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*A007526(n) ).
T(n,0) = A175925(n-1) + 2*n.
Extensions
Partially edited by Andrew Howroyd, Mar 26 2020
Additionally edited by G. C. Greubel, May 28 2020