A155013 Integer part of square root of n^5 = A000584(n).
1, 5, 15, 32, 55, 88, 129, 181, 243, 316, 401, 498, 609, 733, 871, 1024, 1191, 1374, 1573, 1788, 2020, 2270, 2536, 2821, 3125, 3446, 3787, 4148, 4528, 4929, 5350, 5792, 6255, 6740, 7247, 7776, 8327, 8901, 9498, 10119, 10763, 11432, 12124, 12841, 13584, 14351
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[Floor(Sqrt(n^5)): n in [1..30]]; // G. C. Greubel, Dec 30 2017
-
Mathematica
a={};Do[AppendTo[a,IntegerPart[(n^5)^(1/2)]],{n,5!}];a IntegerPart[Sqrt[Range[50]^5]] (* Harvey P. Dale, May 14 2012 *) Table[Floor[Sqrt[n^5]], {n,1,30}] (* G. C. Greubel, Dec 30 2017 *)
-
PARI
for(n=1,30, print1(sqrtint(n^5), ", ")) \\ G. C. Greubel, Dec 30 2017
-
Python
from math import isqrt def A155013(n): return isqrt(n**5) # Chai Wah Wu, Aug 08 2025
Formula
a(n) = floor(n^2 * sqrt(n)). - Davide Rotondo, Dec 01 2024