cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155013 Integer part of square root of n^5 = A000584(n).

Original entry on oeis.org

1, 5, 15, 32, 55, 88, 129, 181, 243, 316, 401, 498, 609, 733, 871, 1024, 1191, 1374, 1573, 1788, 2020, 2270, 2536, 2821, 3125, 3446, 3787, 4148, 4528, 4929, 5350, 5792, 6255, 6740, 7247, 7776, 8327, 8901, 9498, 10119, 10763, 11432, 12124, 12841, 13584, 14351
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000093.
Integer part of square root of n^k: A000196 (k=1), A000093 (k=3), this sequence (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), A155019 (k=17),

Programs

  • Magma
    [Floor(Sqrt(n^5)): n in [1..30]]; // G. C. Greubel, Dec 30 2017
    
  • Mathematica
    a={};Do[AppendTo[a,IntegerPart[(n^5)^(1/2)]],{n,5!}];a
    IntegerPart[Sqrt[Range[50]^5]] (* Harvey P. Dale, May 14 2012 *)
    Table[Floor[Sqrt[n^5]], {n,1,30}] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    for(n=1,30, print1(sqrtint(n^5), ", ")) \\ G. C. Greubel, Dec 30 2017
    
  • Python
    from math import isqrt
    def A155013(n): return isqrt(n**5) # Chai Wah Wu, Aug 08 2025

Formula

a(n) = floor(n^2 * sqrt(n)). - Davide Rotondo, Dec 01 2024