Original entry on oeis.org
2, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1
-
max = 300; Complement[Prime[Range[PrimePi[max]]], 2^Range[Ceiling[Log[2, max]]] - 1] (* Alonso del Arte, Dec 30 2013 *)
-
is_A138837(n)={isprime(n)&&1<M. F. Hasler, Feb 05 2014
A163815
a(n) = n*(2*n^2 + 5*n + 3).
Original entry on oeis.org
0, 10, 42, 108, 220, 390, 630, 952, 1368, 1890, 2530, 3300, 4212, 5278, 6510, 7920, 9520, 11322, 13338, 15580, 18060, 20790, 23782, 27048, 30600, 34450, 38610, 43092, 47908, 53070, 58590, 64480, 70752, 77418, 84490, 91980, 99900, 108262, 117078, 126360, 136120
Offset: 0
-
CoefficientList[Series[2*x*(5+x)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 10, 42, 108}, 50](* Vincenzo Librandi, Mar 06 2012 *)
-
x='x+O('x^50); concat([0], Vec(2*x*(5+x)/(x-1)^4)) \\ G. C. Greubel, Aug 04 2017
A163676
Triangle T(n,m) = 4mn + 2m + 2n - 1 read by rows.
Original entry on oeis.org
7, 13, 23, 19, 33, 47, 25, 43, 61, 79, 31, 53, 75, 97, 119, 37, 63, 89, 115, 141, 167, 43, 73, 103, 133, 163, 193, 223, 49, 83, 117, 151, 185, 219, 253, 287, 55, 93, 131, 169, 207, 245, 283, 321, 359, 61, 103, 145, 187, 229, 271, 313, 355, 397, 439, 67, 113, 159
Offset: 1
Triangle begins:
7;
13, 23;
19, 33, 47;
25, 43, 61, 79;
31, 53, 75, 97, 119;
37, 63, 89, 115, 141, 167;
43, 73, 103, 133, 163, 193, 223;
49, 83, 117, 151, 185, 219, 253, 287;
55, 93, 131, 169, 207, 245, 283, 321, 359;
61, 103, 145, 187, 229, 271, 313, 355, 397, 439;
-
[4*n*k + 2*n + 2*k - 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
-
t[n_,k_]:=4 n*k + 2n + 2k - 1; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
-
for(n=1,10, for(k=1,n, print1(4*n*k + 2*n + 2*k - 1, ", "))) \\ G. C. Greubel, Aug 02 2017
Showing 1-3 of 3 results.
Comments