cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202804 a(n) = n*(6*n+4).

Original entry on oeis.org

0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022

Crossrefs

Programs

  • Maple
    A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n(6n+4),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,10,32},50] (* Harvey P. Dale, Dec 28 2015 *)
  • PARI
    x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024

A163832 a(n) = n*(2*n^2 + 5*n + 1).

Original entry on oeis.org

0, 8, 38, 102, 212, 380, 618, 938, 1352, 1872, 2510, 3278, 4188, 5252, 6482, 7890, 9488, 11288, 13302, 15542, 18020, 20748, 23738, 27002, 30552, 34400, 38558, 43038, 47852, 53012, 58530, 64418, 70688, 77352, 84422, 91910, 99828, 108188, 117002
Offset: 0

Views

Author

Vincenzo Librandi, Aug 05 2009

Keywords

Comments

Row sums of triangle A155156.

Crossrefs

Cf. A155156.

Programs

  • Mathematica
    Table[n(2n^2+5n+1),{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,8,38,102},40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    for(n=0, 40, print1(n*(2*n^2+5*n+1)", ")); \\ Vincenzo Librandi, Feb 22 2012

Formula

G.f.: -2*x*(1+x)*(x-4)/(x-1)^4.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
a(n) = A163683(n) + n = A163815(n) - 2*n = 2*A162254(n).
a(n) = -n*A168244(n+2). - Bruno Berselli, Feb 02 2012
E.g.f.: x*(8 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 05 2017

Extensions

Edited by R. J. Mathar, Aug 05 2009
Showing 1-2 of 2 results.