A155491 Triangle T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1), read by rows.
1, 1, 1, 1, 12, 1, 1, 78, 78, 1, 1, 415, 1820, 415, 1, 1, 2031, 27410, 27410, 2031, 1, 1, 9534, 330225, 959350, 330225, 9534, 1, 1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1, 1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 78, 78, 1; 1, 415, 1820, 415, 1; 1, 2031, 27410, 27410, 2031, 1; 1, 9534, 330225, 959350, 330225, 9534, 1; 1, 43660, 3488884, 23935450, 23935450, 3488884, 43660, 1; 1, 196569, 33888576, 484631574, 1120179060, 484631574, 33888576, 196569, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
t[n_, k_, m_]:= t[n,k,m]= If[k==1 || k==n, 1, (m*n-m*k+1)*t[n-1,k-1,m] + (m*k -(m -1))*t[n-1,k,m]]; T[n_, k_, m_]:= Binomial[n+1,k]*t[n+1,k+1,m]/(k+1); Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Apr 01 2022 *)
-
Sage
@CachedFunction def t(n,k,m): if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m) def T(n,k,m): return binomial(n+1,k)*t(n+1,k+1,m)/(k+1) flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 01 2022
Formula
T(n, k) = binomial(n+1, k)*t(n, k, m)/(k+1), where t(n,k,m) = (m*(n-k)+1)*t(n-1,k-1,m) + (m*k-m+1)*t(n-1,k,m), t(n,1,m) = t(n,n,m) = 1, and m = 3.
From G. C. Greubel, Apr 01 2022: (Start)
T(n, k) = binomial(n+1, k)*A142458(n+1, k+1)/(k+1).
T(n, n-k) = T(n, k). (End)
Extensions
Edited by G. C. Greubel, Apr 01 2022