cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A155618 a(n) = 7^n+4^n-1^n.

Original entry on oeis.org

1, 10, 64, 406, 2656, 17830, 121744, 839926, 5830336, 40615750, 283523824, 1981521046, 13858064416, 96956119270, 678491508304, 4748635251766, 33237225536896, 232647693856390, 1628482317387184, 11399170063280086
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-7*x)+1/(1-4*x)-1/(1-x). E.g.f.: e^(7*x)+e^(4*x)-e^x.
a(n) = 11*a(n-1)-28*a(n-2)-18 with a(0)=1, a(1)=10 [Vincenzo Librandi, Jul 21 2010]
a(0)=1, a(1)=10, a(2)=64, a(n) = 12*a(n-1)-39*a(n-2)+28*a(n-3). - Harvey P. Dale, Feb 04 2014

A155619 8^n+4^n-1^n.

Original entry on oeis.org

1, 11, 79, 575, 4351, 33791, 266239, 2113535, 16842751, 134479871, 1074790399, 8594128895, 68736253951, 549822922751, 4398314946559, 35185445830655, 281479271677951, 2251816993554431, 18014467228958719, 144115462953762815
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[8^n+4^n-1,{n,0,30}] (* or *) LinearRecurrence[{13,-44,32},{1,11,79},30] (* Harvey P. Dale, Jun 19 2013 *)

Formula

G.f.: 1/(1-8*x)+1/(1-4*x)-1/(1-x). E.g.f.: e^(8*x)+e^(4*x)-e^x.
a(n)=12*a(n-1)-32*a(n-2)-21 with a(0)=1, a(1)=11 [From Vincenzo Librandi, Jul 21 2010]
a(0)=1, a(1)=11, a(2)=79, a(n)=13*a(n-1)-44*a(n-2)+32*a(n-3). - Harvey P. Dale, Jun 19 2013

A155621 10^n+4^n-1^n.

Original entry on oeis.org

1, 13, 115, 1063, 10255, 101023, 1004095, 10016383, 100065535, 1000262143, 10001048575, 100004194303, 1000016777215, 10000067108863, 100000268435455, 1000001073741823, 10000004294967295, 100000017179869183
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{15,-54,40},{1,13,115},20] (* Harvey P. Dale, Oct 24 2016 *)

Formula

G.f.: 1/(1-10*x)+1/(1-4*x)-1/(1-x). E.g.f.: e^(10*x)+e^(4*x)-e^x.
a(n)=14*a(n-1)-40*a(n-2)-27 with a(0)=1, a(1)=13 [From Vincenzo Librandi, Jul 21 2010]
Showing 1-3 of 3 results.