A155638 a(n) = 11^n+5^n-1^n.
1, 15, 145, 1455, 15265, 164175, 1787185, 19565295, 214749505, 2359900815, 25947190225, 285360498735, 3138672517345, 34523932847055, 379755937098865, 4177278686993775, 45949882451462785, 505447791438746895
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (17,-71,55).
Crossrefs
Programs
-
Maple
A155638:=n->11^n + 5^n - 1; seq(A155638(n), n=0..30); # Wesley Ivan Hurt, Jan 28 2014
-
Mathematica
Table[11^n + 5^n - 1, {n, 0, 30}] (* Wesley Ivan Hurt, Jan 28 2014 *) LinearRecurrence[{17,-71,55},{1,15,145},30] (* Harvey P. Dale, Jul 03 2019 *)
-
PARI
a(n)=11^n+5^n-1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: 1/(1-11*x)+1/(1-5*x)-1/(1-x). E.g.f.: e^(11*x)+e^(5*x)-e^x.
a(n) = 16*a(n-1)-55*a(n-2)-40 with a(0)=1, a(1)=15 - Vincenzo Librandi, Jul 21 2010