cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A155863 Triangle T(n,k) = n*(n^2 - 1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 120, 60, 1, 1, 120, 360, 360, 120, 1, 1, 210, 840, 1260, 840, 210, 1, 1, 336, 1680, 3360, 3360, 1680, 336, 1, 1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1, 1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1, 1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 29 2009

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   6,    1;
  1,  24,   24,     1;
  1,  60,  120,    60,     1;
  1, 120,  360,   360,   120,     1;
  1, 210,  840,  1260,   840,   210,     1;
  1, 336, 1680,  3360,  3360,  1680,   336,     1;
  1, 504, 3024,  7560, 10080,  7560,  3024,   504,    1,
  1, 720, 5040, 15120, 25200, 25200, 15120,  5040,  720,   1;
  1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A155863:= func< n,k | k eq 0 or k eq n select 1 else 6*Binomial(n+1, 3)*Binomial(n-2, k-1) >;
    [A155863(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
    
  • Mathematica
    (* First program *)
    p[n_, x_]:= p[n, x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n+1), {x, 3}]];
    Flatten[Table[CoefficientList[p[n,x], x], {n,0,12}]]
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, 6*Binomial[n+1, 3]*Binomial[n-2, k-1]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
  • Maxima
    T(n, k):= ratcoef(expand(x^n + n*(n^2 -1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2), x, k)$
    create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 03 2018 */
    
  • Sage
    def A155863(n,k): return 1 if (k==0 or k==n) else 6*binomial(n+1, 3)*binomial(n-2, k-1)
    flatten([[A155863(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n, k) = coefficients of p(n, x), where p(n, x) = 1 + x^n + x*((d/dx)^3 (x+1)^(n+1)) and T(0, 0) = 1.
From Franck Maminirina Ramaharo, Dec 03 2018: (Start)
T(n, k) = (n-1)*n*(n+1)*binomial(n-2, k-1) with T(n, 0) = T(n, n) = 1.
n-th row polynomial is x^n + n*(n^2 - 1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2.
G.f.: 1/(1 - y) + 1/(1 - x*y) + (6*x*y^2)/(1 - y - x*y)^4 - 1.
E.g.f.: exp(y) + exp(x*y) + (3*x*y^2 + (x + x^2)*y^3)*exp((1 + x)*y) - 1. (End)
Sum_{k=0..n} T(n, k) = 2 - [n=0] + 6*A001789(n+1) = 2 - [n=0] + A052771(n+1). - G. C. Greubel, Jun 04 2021

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Dec 03 2018