A155871
Subtraction of polynomial coefficients of MacMahon A060187 from third derivative of Pascal's triangle A155863: p(x,n)=(If[n == 0, 1, x^n + 1 + x*D[( x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x.
Original entry on oeis.org
1, 1, -16, -110, -16, -117, -1322, -1322, -117, -512, -9703, -22288, -9703, -512, -1843, -58977, -256363, -256363, -58977, -1843, -6048, -328588, -2477728, -4664934, -2477728, -328588, -6048, -18953, -1751300, -21692852, -69388094
Offset: 3
{1, 1},
{-16, -110, -16},
{-117, -1322, -1322, -117},
{-512, -9703, -22288, -9703, -512},
{-1843, -58977, -256363, -256363, -58977, -1843},
{-6048, -328588, -2477728, -4664934, -2477728, -328588, -6048},
{-18953, -1751300, -21692852, -69388094, -69388094, -21692852, -1751300, -18953},
{-58048, -9108221, -178273184, -906867842, -1527023168, -906867842, -178273184, -9108221, -58048},
{-175815, -46690547, -1403033205, -10836712218, -28587853494, -28587853494, -10836712218, -1403033205, -46690547, -175815},
{-529712, -237214810, -10708833968, -121383574287, -477020204064, -743288082732, -477020204064, -121383574287, -10708833968, -237214810, -529712},
{-1592125, -1198358670, -79944129566, -1295922974075, -7310749751463, -16818058154484, -16818058154484, -7310749751463, -1295922974075, -79944129566, -1198358670, -1592125}
-
p[x_, n_] = (If[n == 0, 1, x^n + 1 + x*D[(x + 1)^(n + 1), {x, 3}]] - 2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2])/x;
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 3, 13}];
a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 3, 13}];
Flatten[a]
A155865
Triangle T(n,k) = (n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 12, 12, 4, 1, 1, 5, 20, 30, 20, 5, 1, 1, 6, 30, 60, 60, 30, 6, 1, 1, 7, 42, 105, 140, 105, 42, 7, 1, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1, 1, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 6, 3, 1;
1, 4, 12, 12, 4, 1;
1, 5, 20, 30, 20, 5, 1;
1, 6, 30, 60, 60, 30, 6, 1;
1, 7, 42, 105, 140, 105, 42, 7, 1;
1, 8, 56, 168, 280, 280, 168, 56, 8, 1;
1, 9, 72, 252, 504, 630, 504, 252, 72, 9, 1;
...
ConvOffs transform of (1, 1, 2, 3) = integers of row 4: (1, 3, 6, 3, 1). _Gary W. Adamson_, Jul 09 2012
-
A155865:= func< n,k | k eq 0 or k eq n select 1 else (n-1)*Binomial(n-2, k-1) >;
[A155865(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
p[x_, n_] = If[n==0, 1, 1 + x^n + x*D[(x+1)^(n-1), {x, 1}]];
Flatten[Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]]
(* or *)
q = 1;
c[n_, q_]= If[n<2, 1, Product[(i-1)^q, {i, 2, n}]];
T[n_, m_, q_]= c[n, q]/(c[m, q]*c[n-m, q]);
Flatten[Table[T[n, m, q], {n,0,12}, {m, 0, n}]] (* Roger L. Bagula, Mar 09 2010 *)
-
T(n, k) := if k = 0 or k = n then 1 else (n-1)*binomial(n-2, k-1)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 05 2018 */
-
def A155865(n,k): return 1 if (k==0 or k==n) else (n-1)*binomial(n-2, k-1)
flatten([[A155865(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A155864
Triangle T(n,k) = n*(n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 24, 12, 1, 1, 20, 60, 60, 20, 1, 1, 30, 120, 180, 120, 30, 1, 1, 42, 210, 420, 420, 210, 42, 1, 1, 56, 336, 840, 1120, 840, 336, 56, 1, 1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1, 1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 12, 24, 12, 1;
1, 20, 60, 60, 20, 1;
1, 30, 120, 180, 120, 30, 1;
1, 42, 210, 420, 420, 210, 42, 1;
1, 56, 336, 840, 1120, 840, 336, 56, 1;
1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1;
1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1;
...
-
A155864:= func< n,k | k eq 0 or k eq n select 1 else n*(n-1)*Binomial(n-2, k-1) >;
[A155864(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
(* First program *)
p[n_, x_]:= p[n,x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n), {x, 2}]];
Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]]
(* Second program *)
Table[If[k==0 || k==n, 1, 2*Binomial[n, 2]*Binomial[n-2, k-1]], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Jun 04 2021 *)
-
T(n, k) := ratcoef(x^n + n*(n-1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2, x, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 04 2018 */
-
def A155864(n,k): return 1 if (k==0 or k==n) else n*(n-1)*binomial(n-2,k-1)
flatten([[A155864(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A168621
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 28, 42, 28, 1;
1, 125, 250, 250, 125, 1;
1, 726, 1815, 2420, 1815, 726, 1;
1, 5047, 15141, 25235, 25235, 15141, 5047, 1;
1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1;
...
-
p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)];
Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
-
T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */
Showing 1-4 of 4 results.
Comments