A155863
Triangle T(n,k) = n*(n^2 - 1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 24, 24, 1, 1, 60, 120, 60, 1, 1, 120, 360, 360, 120, 1, 1, 210, 840, 1260, 840, 210, 1, 1, 336, 1680, 3360, 3360, 1680, 336, 1, 1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1, 1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1, 1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 24, 24, 1;
1, 60, 120, 60, 1;
1, 120, 360, 360, 120, 1;
1, 210, 840, 1260, 840, 210, 1;
1, 336, 1680, 3360, 3360, 1680, 336, 1;
1, 504, 3024, 7560, 10080, 7560, 3024, 504, 1,
1, 720, 5040, 15120, 25200, 25200, 15120, 5040, 720, 1;
1, 990, 7920, 27720, 55440, 69300, 55440, 27720, 7920, 990, 1;
...
-
A155863:= func< n,k | k eq 0 or k eq n select 1 else 6*Binomial(n+1, 3)*Binomial(n-2, k-1) >;
[A155863(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
(* First program *)
p[n_, x_]:= p[n, x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n+1), {x, 3}]];
Flatten[Table[CoefficientList[p[n,x], x], {n,0,12}]]
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, 6*Binomial[n+1, 3]*Binomial[n-2, k-1]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 04 2021 *)
-
T(n, k):= ratcoef(expand(x^n + n*(n^2 -1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2), x, k)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 03 2018 */
-
def A155863(n,k): return 1 if (k==0 or k==n) else 6*binomial(n+1, 3)*binomial(n-2, k-1)
flatten([[A155863(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A155864
Triangle T(n,k) = n*(n-1)*binomial(n-2, k-1) for 1 <= k <= n-1, n >= 2, and T(n,0) = T(n,n) = 1 for n >= 0, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 6, 1, 1, 12, 24, 12, 1, 1, 20, 60, 60, 20, 1, 1, 30, 120, 180, 120, 30, 1, 1, 42, 210, 420, 420, 210, 42, 1, 1, 56, 336, 840, 1120, 840, 336, 56, 1, 1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1, 1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 6, 6, 1;
1, 12, 24, 12, 1;
1, 20, 60, 60, 20, 1;
1, 30, 120, 180, 120, 30, 1;
1, 42, 210, 420, 420, 210, 42, 1;
1, 56, 336, 840, 1120, 840, 336, 56, 1;
1, 72, 504, 1512, 2520, 2520, 1512, 504, 72, 1;
1, 90, 720, 2520, 5040, 6300, 5040, 2520, 720, 90, 1;
...
-
A155864:= func< n,k | k eq 0 or k eq n select 1 else n*(n-1)*Binomial(n-2, k-1) >;
[A155864(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 04 2021
-
(* First program *)
p[n_, x_]:= p[n,x]= If[n==0, 1, 1 + x^n + x*D[(x+1)^(n), {x, 2}]];
Flatten[Table[CoefficientList[p[n,x], x], {n, 0, 12}]]
(* Second program *)
Table[If[k==0 || k==n, 1, 2*Binomial[n, 2]*Binomial[n-2, k-1]], {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Jun 04 2021 *)
-
T(n, k) := ratcoef(x^n + n*(n-1)*x*(x+1)^(n-2) + (1 + (-1)^(2^n))/2, x, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 04 2018 */
-
def A155864(n,k): return 1 if (k==0 or k==n) else n*(n-1)*binomial(n-2,k-1)
flatten([[A155864(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021
A174126
Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 36, 9, 1, 1, 16, 144, 144, 16, 1, 1, 25, 400, 900, 400, 25, 1, 1, 36, 900, 3600, 3600, 900, 36, 1, 1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1, 1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1, 1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 4, 4, 1;
1, 9, 36, 9, 1;
1, 16, 144, 144, 16, 1;
1, 25, 400, 900, 400, 25, 1;
1, 36, 900, 3600, 3600, 900, 36, 1;
1, 49, 1764, 11025, 19600, 11025, 1764, 49, 1;
1, 64, 3136, 28224, 78400, 78400, 28224, 3136, 64, 1;
1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[(i-1)^2, {i,2,n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
A174127
Triangle T(n, k) = (n-k)^3 * binomial(n-1, k-1)^3 with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 8, 8, 1, 1, 27, 216, 27, 1, 1, 64, 1728, 1728, 64, 1, 1, 125, 8000, 27000, 8000, 125, 1, 1, 216, 27000, 216000, 216000, 27000, 216, 1, 1, 343, 74088, 1157625, 2744000, 1157625, 74088, 343, 1, 1, 512, 175616, 4741632, 21952000, 21952000, 4741632, 175616, 512, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 8, 8, 1;
1, 27, 216, 27, 1;
1, 64, 1728, 1728, 64, 1;
1, 125, 8000, 27000, 8000, 125, 1;
1, 216, 27000, 216000, 216000, 27000, 216, 1;
1, 343, 74088, 1157625, 2744000, 1157625, 74088, 343, 1;
1, 512, 175616, 4741632, 21952000, 21952000, 4741632, 175616, 512, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >;
[T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[(i-1)^3, {i,2,n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A168621
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,k) = ((n - 1)! + 1)*binomial(n, k) for 1 <= k <= n - 1, n >= 2.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 28, 42, 28, 1, 1, 125, 250, 250, 125, 1, 1, 726, 1815, 2420, 1815, 726, 1, 1, 5047, 15141, 25235, 25235, 15141, 5047, 1, 1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1, 1, 362889, 1451556, 3386964, 5080446, 5080446, 3386964, 1451556, 362889, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 9, 9, 1;
1, 28, 42, 28, 1;
1, 125, 250, 250, 125, 1;
1, 726, 1815, 2420, 1815, 726, 1;
1, 5047, 15141, 25235, 25235, 15141, 5047, 1;
1, 40328, 141148, 282296, 352870, 282296, 141148, 40328, 1;
...
-
p[x_, n_] := If[n == 0, 1, (x + 1)^n + (n - 1)!*((x + 1)^n - x^n - 1)];
Table[CoefficientList[p[x, n], x], {n, 0, 12}] // Flatten (* Franck Maminirina Ramaharo, Dec 22 2018 *)
-
T(n, k) := if k = 0 or k = n then 1 else ((n - 1)! + 1)*binomial(n, k)$
create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 22 2018 */
Showing 1-5 of 5 results.
Comments