A155923 Positive numbers y such that y^2 is of the form x^2+(x+17)^2 with integer x.
13, 17, 25, 53, 85, 137, 305, 493, 797, 1777, 2873, 4645, 10357, 16745, 27073, 60365, 97597, 157793, 351833, 568837, 919685, 2050633, 3315425, 5360317, 11951965, 19323713, 31242217, 69661157, 112626853, 182092985, 406014977, 656437405
Offset: 1
Examples
(-5,a(1)) = (-5,13) is a solution: (-5)^2+(-5+17)^2 = 25+144 = 169 = 13^2; (A118120(1), a(2)) = (0, 17) is a solution: 0^2+(0+17)^2 = 289 = 17^2; (A118120(2), a(3)) = (7, 25) is a solution: 7^2+(7+17)^2 = 49+576 = 625 = 25^2.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{0,0,6,0,0,-1},{13,17,25,53,85,137},50] (* Harvey P. Dale, Feb 11 2015 *)
-
PARI
{forstep(n=-5, 660000000, [1,3], if(issquare(2*n*(n+17)+289, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 13, a(2) = 17, a(3) = 25, a(4) = 53, a(5) = 85, a(6) = 137.
G.f.: x*(1-x)*(13+30*x+55*x^2+30*x^3+13*x^4)/(1-6*x^3+x^6).
Extensions
G.f. corrected, first and fourth comment and examples edited, cross-reference added by Klaus Brockhaus, Sep 22 2009
Comments