cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156020 Denominators in an infinite sum for Pi.

Original entry on oeis.org

1, 106, 877203, 2195225334, 17599271777, 360950005720, 17348726394920, 1996375977735378, 26627865341803449, 668044491303666717, 13157161331655387213, 7653283960850915182425, 3256741424583567733172850, 388712386741794886666062286, 266182386623377135274423955447
Offset: 1

Views

Author

Keywords

Comments

For k >= 0, define Q(k) = A002485(2k)/A002486(2k) (convergents to Pi that are less than Pi), so Pi = Sum_{k>=1} (Q(k) - Q(k-1)). Then a(n) is the denominator of Q(n) - Q(n-1).

Examples

			a(2) = 106 since A002485(4)/A002486(4) = 333/106, A002485(2)/A002486(2) = 3/1, and 333/106 - 3/1 = 15/106 (see table below).
Pi = 3/1 + 15/106 + 73/877203 + 1/2195225334 + 2/17599271777 + 3/360950005720 + 7/17348726394920 + ....
.
  n  Q(n) = A002485(2n)/A002486(2n)  Q(n) - Q(n-1)    a(n)
  -  ------------------------------  -------------  ------
  0       0/1     = 0                     -              -
  1       3/1     = 3                    3/1             1
  2     333/106   = 3.1415094339...     15/106         106
  3  103993/33102 = 3.1415926530...     73/877203   877203
		

Crossrefs

Cf. A002485, A002486, A156019 (numerators).

Programs

Formula

a(n) = denominator(A002485(2n)/A002486(2n) - A002485(2n-2)/A002486(2n-2)).

Extensions

More terms from Alexander R. Povolotsky, Sep 01 2009
More terms from Michel Marcus, Jan 05 2022