A156058 a(n) = 5^n * Catalan(n).
1, 5, 50, 625, 8750, 131250, 2062500, 33515625, 558593750, 9496093750, 164023437500, 2870410156250, 50784179687500, 906860351562500, 16323486328125000, 295863189697265625, 5395152282714843750, 98911125183105468750, 1822047042846679687500
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
[5^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
Maple
A156058_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := 5*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od; convert(a,list)end: A156058_list(16); # Peter Luschny, May 19 2011 A156058 := proc(n) 5^n*A000108(n) ; end proc: # R. J. Mathar, Oct 06 2012
-
Mathematica
Table[5^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 13 2011 *)
Formula
a(n) = 5^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = the infinite square production matrix:
5, 5, 0, 0, 0, 0,...
5, 5, 5, 0, 0, 0,...
5, 5, 5, 5, 0, 0,...
5, 5, 5, 5, 5, 0,...
... (End)
E.g.f.: KummerM(1/2, 2, 20*x). - Peter Luschny, Aug 26 2012
D-finite with recurrence (n+1)*a(n) -10*(2*n-1)*a(n-1)=0. - R. J. Mathar, Oct 06 2012
G.f.: c(5*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*4^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 5*x/(1 - 5*x/(1 - 5*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Apr 19 2017
Sum_{n>=0} 1/a(n) = 410/361 + 600*arctan(1/sqrt(19)) / (361*sqrt(19)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 130/147 - 200*arctanh(1/sqrt(21)) / (147*sqrt(21)). - Amiram Eldar, Jan 25 2022
Comments