cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A176344 T(n,k) = 1 + A176343(n) - A176343(k) - A176343(n-k), triangle read by rows (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 11, 13, 11, 1, 1, 65, 75, 75, 65, 1, 1, 568, 632, 640, 632, 568, 1, 1, 7789, 8356, 8418, 8418, 8356, 7789, 1, 1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1, 1, 5847568, 6016328, 6024114, 6024671, 6024671, 6024114, 6016328, 5847568, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 15 2010

Keywords

Examples

			Triangle begins:
  1;
  1,      1;
  1,      1,      1;
  1,      3,      3,      1;
  1,     11,     13,     11,      1;
  1,     65,     75,     75,     65,      1;
  1,    568,    632,    640,    632,    568,      1;
  1,   7789,   8356,   8418,   8418,   8356,   7789,      1;
  1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1;
  ...
		

Crossrefs

Programs

  • GAP
    b:= function(n)
        if n=0 then return 0;
        else return 1 + Fibonacci(n)*b(n-1);
        fi; end;
    T:= function(n,k) return 1 + b(n) - b(n-k) - b(k); end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Dec 07 2019
  • Magma
    function b(n)
      if n eq 0 then return 0;
      else return 1 + Fibonacci(n)*b(n-1);
      end if; return b; end function;
    function T(n,k) return 1 + b(n) - b(n-k) - b(k); end function; [ T(n,k) : k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
    
  • Maple
    with(combinat);
    b:= proc(n) option remember;
       if n = 0 then 0    else 1+fibonacci(n)*b(n-1)
       fi; end proc;
    T:= proc (n, k) 1+b(n)-b(n-k)-b(k) end proc;
    seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Dec 08 2019
  • Mathematica
    b[n_]:= b[n]= If[n==0, 0, Fibonacci[n]*b[n-1] + 1]; (* A176343 *)
    T[n_, k_]:= T[n, k] = 1 + a[n] - a[n-k] - a[k];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Dec 08 2019 *)
  • Maxima
    (a[0] : 0, a[n] := fib(n)*a[n-1] + 1, T(n, m) := 1 + a[n] - a[m] - a[n-m])$ create_list(T(n, m), n, 0, 10, m, 0, n); /* Franck Maminirina Ramaharo, Nov 25 2018 */
    
  • PARI
    b(n) = if(n==0, 0, 1 + fibonacci(n)*b(n-1) );
    T(n,k) = 1 + b(n) - b(n-k) - b(k);
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 07 2019
    
  • Sage
    def b(n):
        if (n==0): return 0
        else: return 1 + fibonacci(n)*b(n-1)
    def T(n,k): return 1 + b(n) - b(n-k) - b(k)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
    

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Nov 25 2018

A176625 T(n,k) = 1 + 3*k*(k - n), triangle read by rows (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, -2, 1, 1, -5, -5, 1, 1, -8, -11, -8, 1, 1, -11, -17, -17, -11, 1, 1, -14, -23, -26, -23, -14, 1, 1, -17, -29, -35, -35, -29, -17, 1, 1, -20, -35, -44, -47, -44, -35, -20, 1, 1, -23, -41, -53, -59, -59, -53, -41, -23, 1, 1, -26, -47, -62, -71, -74, -71, -62, -47
Offset: 0

Views

Author

Roger L. Bagula, Apr 22 2010

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,  -2,   1:
  1,  -5,  -5,   1;
  1,  -8, -11,  -8,   1;
  1, -11, -17, -17, -11,   1;
  1, -14, -23, -26, -23, -14,   1;
  1, -17, -29, -35, -35, -29, -17,   1;
  1, -20, -35, -44, -47, -44, -35, -20,   1;
  1, -23, -41, -53, -59, -59, -53, -41, -23,  1;
  1, -26, -47, -62, -71, -74, -71, -62, -47, -26, 1;
  ...
		

Crossrefs

Programs

  • Magma
    / * As triangle */ [[1 + 3*k*(k - n): k in [0..n]]: n in [0.. 15]];  // Vincenzo Librandi, Nov 26 2018
  • Mathematica
    a[n_] = n*(3*n - 1)/2; (* A000326 *)
    t[n_, m_] = 1 - a[n] + a[m] + a[n - m];
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%]
  • Maxima
    create_list(1 + 3*k*(k - n), n, 0, 20, k, 0, n); /* Franck Maminirina Ramaharo, Nov 25 2018 */
    

Formula

T(n,k) = 1 - A000326(n) + A000326(k) + A000326(n-k).

Extensions

Edited and name clarified by Franck Maminirina Ramaharo, Nov 25 2018
Showing 1-2 of 2 results.