cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A156112 Primes p such that p+36 and p+72 are both prime.

Original entry on oeis.org

7, 11, 17, 31, 37, 67, 101, 127, 157, 191, 197, 241, 277, 281, 311, 317, 337, 347, 431, 521, 541, 571, 647, 751, 787, 911, 941, 947, 977, 997, 1051, 1151, 1187, 1451, 1487, 1621, 1627, 1877, 2017, 2027, 2237, 2311, 2467, 2521, 2621, 2647, 2657, 2677, 2731
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A156105 INTERSECT A156104. [R. J. Mathar, Feb 09 2009]

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 36) and IsPrime (p + 72)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 36,# + 72}]&] (* Vincenzo Librandi, Oct 31 2012 *)
    Select[Prime[Range[3000]],AllTrue[#+{36,72},PrimeQ]&] (* Harvey P. Dale, Jul 12 2023 *)

Extensions

More terms from R. J. Mathar, Feb 09 2009

A156124 Primes p, such that p+72 and p+144 are both prime.

Original entry on oeis.org

7, 29, 37, 67, 79, 107, 127, 139, 167, 239, 277, 317, 347, 359, 419, 449, 499, 547, 739, 809, 839, 919, 947, 1019, 1217, 1229, 1289, 1327, 1367, 1399, 1409, 1427, 1439, 1549, 1597, 1789, 1997, 2017, 2069, 2237, 2239, 2267, 2477, 2549, 2647, 2657, 2659, 2897
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A156105 INTERSECT A156107. [R. J. Mathar, Jul 13 2009]

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 72)and IsPrime (p + 144)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 72, # + 144}]&] (* Vincenzo Librandi, Oct 31 2012 *)

Extensions

More terms from R. J. Mathar, Jul 13 2009

A156110 Primes p such that p+18 and p+72 are both prime.

Original entry on oeis.org

11, 29, 41, 79, 109, 139, 179, 211, 239, 349, 431, 449, 491, 569, 601, 701, 739, 751, 809, 811, 839, 911, 919, 991, 1021, 1031, 1051, 1091, 1231, 1289, 1301, 1381, 1409, 1471, 1481, 1549, 1759, 1861, 1931, 2011, 2069, 2081, 2221, 2269, 2339, 2459, 2521
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Comments

A153418 INTERSECT A156105. [Bruno Berselli, Nov 01 2012]

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000)|IsPrime(p + 18) and IsPrime (p + 72)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[3000]], And @@ PrimeQ[{# + 18, # + 72}]&] (* Vincenzo Librandi, Oct 31 2012 *)

A274045 Primes p such that p + 72 is the next prime.

Original entry on oeis.org

31397, 360091, 507217, 517639, 633667, 650107, 705317, 749471, 753859, 770669, 809629, 818021, 828277, 1001839, 1025957, 1087159, 1133387, 1145899, 1152421, 1164101, 1206869, 1207769, 1210639, 1241087, 1278911, 1290719, 1351997
Offset: 1

Views

Author

Karl V. Keller, Jr., Jun 07 2016

Keywords

Comments

This sequence is a subsequence of A156105 (p and p + 72 are primes).

Examples

			For 31397, the next prime is 31397 + 72 = 31469.
For 360091, the next prime is 360091 + 72 = 360163.
		

Crossrefs

Programs

  • Mathematica
    Select[Partition[Prime[Range[105000]],2,1],#[[2]]-#[[1]]==72&][[All,1]] (* Harvey P. Dale, Dec 19 2021 *)
  • PARI
    is(n)=isprime(n) && nextprime(n+1)-n==72 \\ Charles R Greathouse IV, Jun 19 2016
  • Python
    from sympy import isprime,nextprime
    for i in range(3,1500001,2):
      if isprime(i) and nextprime(i) == i+72: print(i,end=', ')
    
Showing 1-6 of 6 results.