cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156147 a(n+1) = round( c(n)/2 ), where c(n) is the concatenation of all preceding terms a(1)...a(n) and a(1)=1.

Original entry on oeis.org

1, 1, 6, 58, 5829, 58292915, 5829291479146458, 58292914791464577914645739573229, 5829291479146457791464573957322929146457395732288957322869786615
Offset: 1

Views

Author

Keywords

Comments

Originally, round( c/2 ) was formulated as "rank of c in the sequence of odd resp. even (positive) numbers".
The sequence has some characteristics reminiscent of Thue-Morse type sequences. It "converges" to a non-periodic sequence of digits: all but the last digit of a given term will remain the initial digits of all subsequent terms. - M. F. Hasler
It's interesting that the number of digits of a(k) for k>2 equals to 2^(k-3). - Farideh Firoozbakht

Crossrefs

Cf. A156146 (other starting values).

Programs

  • Maple
    rank:= n-> `if`(irem(n,2)=0, n/2, (n+1)/2): a:= proc(n) option remember; if n=1 then 1 else rank(parse(cat(seq(a(j), j=1..n-1)))) fi end: seq(a(n), n=1..10);  # Alois P. Heinz
  • Mathematica
    a[1]=1; a[n_]:=a[n]=(v={};Do[v= Join[v,IntegerDigits[a[k]]],{k,n-1}]; Floor[(1+FromDigits[v])/2]) (* Farideh Firoozbakht *)
  • PARI
    A156147(n)={local(a=1,t=1); while(n-->1,t=round(1/2*a=eval(Str(a,t))));t} /* M. F. Hasler */

Extensions

Typos fixed by Charles R Greathouse IV, Oct 28 2009

A159861 Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).

Original entry on oeis.org

1, 1, 1, 11, 1, 1, 1111, 6, 1, 1, 11111111, 58, 4, 1, 1, 1111111111111111, 5829, 38, 3, 1, 1, 11111111111111111111111111111111, 58292915, 3813, 29, 3, 1, 1, 1111111111111111111111111111111111111111111111111111111111111111, 5829291479146458, 38127938, 2833, 23, 2, 1, 1
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Examples

			A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
Square array A(m,n) begins:
  1,  1, 11, 1111, 11111111, 1111111111111111,  ...
  1,  1,  6,   58,     5829,         58292915,  ...
  1,  1,  4,   38,     3813,         38127938,  ...
  1,  1,  3,   29,     2833,         28323209,  ...
  1,  1,  3,   23,     2265,         22646453,  ...
  1,  1,  2,   19,     1870,         18698645,  ...
		

Crossrefs

Row m=2 gives: A156147.
Main diagonal gives: A159862.

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    seq(seq(A(m, d-m), m=1..d-1), d=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2023, after Maple code *)

A159862 Main diagonal of A159861.

Original entry on oeis.org

1, 1, 4, 29, 2265, 18698645, 1602308616574727, 14017675267522095175220940844027, 1245902734717669791621141496863001384336371908521990690157218737
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Comments

The length (number of decimal digits) of a(n) may be a power of 2 and often simply doubles, when n is increased by 1. But there are many exceptions: n = 11, 12, 13 give lengths 2^8, 3*2^7, 2^9, respectively. A factor of 3 is found in the lengths of a(n) for n = 12, 112..123, 1113..1234, 11123..12345, and so on. A factor of 7 is found for n = 1112, 11112..11122, and so on. 15 is factor of the length of a(11111112).

Crossrefs

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    a:= n-> A(n,n):
    seq(a(n), n=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    a[n_] := A[n, n];
    Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 13 2023, after Maple code *)
Showing 1-3 of 3 results.