A156147
a(n+1) = round( c(n)/2 ), where c(n) is the concatenation of all preceding terms a(1)...a(n) and a(1)=1.
Original entry on oeis.org
1, 1, 6, 58, 5829, 58292915, 5829291479146458, 58292914791464577914645739573229, 5829291479146457791464573957322929146457395732288957322869786615
Offset: 1
Cf.
A156146 (other starting values).
-
rank:= n-> `if`(irem(n,2)=0, n/2, (n+1)/2): a:= proc(n) option remember; if n=1 then 1 else rank(parse(cat(seq(a(j), j=1..n-1)))) fi end: seq(a(n), n=1..10); # Alois P. Heinz
-
a[1]=1; a[n_]:=a[n]=(v={};Do[v= Join[v,IntegerDigits[a[k]]],{k,n-1}]; Floor[(1+FromDigits[v])/2]) (* Farideh Firoozbakht *)
-
A156147(n)={local(a=1,t=1); while(n-->1,t=round(1/2*a=eval(Str(a,t))));t} /* M. F. Hasler */
A159861
Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).
Original entry on oeis.org
1, 1, 1, 11, 1, 1, 1111, 6, 1, 1, 11111111, 58, 4, 1, 1, 1111111111111111, 5829, 38, 3, 1, 1, 11111111111111111111111111111111, 58292915, 3813, 29, 3, 1, 1, 1111111111111111111111111111111111111111111111111111111111111111, 5829291479146458, 38127938, 2833, 23, 2, 1, 1
Offset: 1
A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
Square array A(m,n) begins:
1, 1, 11, 1111, 11111111, 1111111111111111, ...
1, 1, 6, 58, 5829, 58292915, ...
1, 1, 4, 38, 3813, 38127938, ...
1, 1, 3, 29, 2833, 28323209, ...
1, 1, 3, 23, 2265, 22646453, ...
1, 1, 2, 19, 1870, 18698645, ...
-
R:= (S,m)-> iquo(S+m-1, m):
A:= proc(m, n) option remember; `if`(n=1, 1,
R(parse(cat(seq(A(m, j), j=1..n-1))), m))
end:
seq(seq(A(m, d-m), m=1..d-1), d=1..10);
-
R[S_, m_] := Quotient[S + m - 1, m];
A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2023, after Maple code *)
Original entry on oeis.org
1, 1, 4, 29, 2265, 18698645, 1602308616574727, 14017675267522095175220940844027, 1245902734717669791621141496863001384336371908521990690157218737
Offset: 1
-
R:= (S,m)-> iquo(S+m-1, m):
A:= proc(m, n) option remember; `if`(n=1, 1,
R(parse(cat(seq(A(m, j), j=1..n-1))), m))
end:
a:= n-> A(n,n):
seq(a(n), n=1..10);
-
R[S_, m_] := Quotient[S + m - 1, m];
A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
a[n_] := A[n, n];
Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 13 2023, after Maple code *)
Showing 1-3 of 3 results.
Comments