cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A156146 Table T(m,n) = round( c(m,n)/2 ), where c(m,n) is the concatenation of all preceding terms in row m, T(m,1)...T(m,n-1) and T(m,1)=m.

Original entry on oeis.org

1, 1, 2, 6, 1, 3, 58, 11, 2, 4, 5829, 1056, 16, 2, 5, 58292915, 10555528, 1608, 21, 3, 6, 5829291479146458, 1055552805277764, 16080804, 2111, 27, 3, 7, 58292914791464577914645739573229, 10555528052777640527776402638882
Offset: 1

Views

Author

Keywords

Comments

Originally, round( c/2 ) was formulated as "rank of c in the sequence of odd resp. even (positive) numbers". Each of the rows has some characteristics reminiscent of Thue-Morse type sequences.
It is interesting that the number of digits of T(1,k) for k>2 equals to 2^(k-3). And for i>1 & k>1 [and i<20 - M. F. Hasler] the number of digits of T(i,k) equals to 2^(k-2). - Farideh Firoozbakht

Examples

			T(2,2) = 1 since T(2,1) = 2 is the first even number. T(2,3) = 11 since concat(T(2,1),T(2,2)) = 21 is the 11th odd number.
Table begins:
  1, 1,  6,   58,     5829,         58292915, ...
  2, 1, 11, 1056, 10555528, 1055552805277764, ...
  3, 2, 16, 1608, 16080804, 1608080408040402, ...
  4, 2, 21, 2111, 21106056, 2110605560553028, ...
  5, 3, 27, 2664, 26636332, 2663633213318166, ...
  6, 3, 32, 3166, 31661583, 3166158315830792, ...
		

Crossrefs

Cf. A156147 (first row of the table).

Programs

  • Maple
    rank:= n-> `if`(irem(n,2)=0, n/2, (n+1)/2); a:= proc(n,k) option remember; if n=1 then k else rank(parse(cat(seq(a(j,k), j=1..n-1)))) fi end; seq(seq(a(d-k,k), k=1..d-1), d=1..10); # Alois P. Heinz
  • Mathematica
    Si[1]=i;Si[n_]:=Si[n]=(v={};Do[v= Join[v,IntegerDigits[Si[k]]],{k,n-1}]; Floor[(1+FromDigits[v])/2]) (* Farideh Firoozbakht *)
  • PARI
    T(m,n)={ my(t=round(m/2)); n>1 || return(m); while( n-- > 1, t=round(1/2*m=eval(Str(m,t)))); t }
    A156146=concat( vector( 12,d,vector( d,k, T(k,d-k+1)))) /* M. F. Hasler */

Extensions

Typos fixed by Charles R Greathouse IV, Oct 28 2009

A159861 Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).

Original entry on oeis.org

1, 1, 1, 11, 1, 1, 1111, 6, 1, 1, 11111111, 58, 4, 1, 1, 1111111111111111, 5829, 38, 3, 1, 1, 11111111111111111111111111111111, 58292915, 3813, 29, 3, 1, 1, 1111111111111111111111111111111111111111111111111111111111111111, 5829291479146458, 38127938, 2833, 23, 2, 1, 1
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Examples

			A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
Square array A(m,n) begins:
  1,  1, 11, 1111, 11111111, 1111111111111111,  ...
  1,  1,  6,   58,     5829,         58292915,  ...
  1,  1,  4,   38,     3813,         38127938,  ...
  1,  1,  3,   29,     2833,         28323209,  ...
  1,  1,  3,   23,     2265,         22646453,  ...
  1,  1,  2,   19,     1870,         18698645,  ...
		

Crossrefs

Row m=2 gives: A156147.
Main diagonal gives: A159862.

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    seq(seq(A(m, d-m), m=1..d-1), d=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2023, after Maple code *)

A159862 Main diagonal of A159861.

Original entry on oeis.org

1, 1, 4, 29, 2265, 18698645, 1602308616574727, 14017675267522095175220940844027, 1245902734717669791621141496863001384336371908521990690157218737
Offset: 1

Views

Author

Eric Angelini and Alois P. Heinz, Apr 24 2009

Keywords

Comments

The length (number of decimal digits) of a(n) may be a power of 2 and often simply doubles, when n is increased by 1. But there are many exceptions: n = 11, 12, 13 give lengths 2^8, 3*2^7, 2^9, respectively. A factor of 3 is found in the lengths of a(n) for n = 12, 112..123, 1113..1234, 11123..12345, and so on. A factor of 7 is found for n = 1112, 11112..11122, and so on. 15 is factor of the length of a(11111112).

Crossrefs

Programs

  • Maple
    R:= (S,m)-> iquo(S+m-1, m):
    A:= proc(m, n) option remember; `if`(n=1, 1,
          R(parse(cat(seq(A(m, j), j=1..n-1))), m))
        end:
    a:= n-> A(n,n):
    seq(a(n), n=1..10);
  • Mathematica
    R[S_, m_] := Quotient[S + m - 1, m];
    A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
    a[n_] := A[n, n];
    Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Feb 13 2023, after Maple code *)
Showing 1-3 of 3 results.