A156148
Numbers k such that prime(prime(k)) + 2 == 0 (mod prime(k)), where prime(p)=A000040(p) is the p-th prime.
Original entry on oeis.org
5, 20, 51891, 51893
Offset: 1
-
Select[Range[52000],Mod[Prime[Prime[#]]+2,Prime[#]]==0&] (* Harvey P. Dale, Jul 12 2022 *)
-
p=c=0; until(0, until( isprime(c++), p=nextprime(p+1)); (p+2)%c & next; print1( primepi(c)","))
A156150
Primes p such that p+2 = 0 (mod pi(p)) and pi(p)=A000720(p) is prime.
Original entry on oeis.org
31, 353, 9559783, 9559903
Offset: 1
A260989
Integers n such that prime(n-1) + prime(n+1) is a multiple of n.
Original entry on oeis.org
4, 5, 8, 11, 12, 18, 20, 70, 72, 1053, 4116, 6459, 6460, 40083, 63328, 251742, 399924, 637320, 637322, 637330, 2582288, 2582436, 2582488, 10553828, 16899042, 69709721, 179992913, 179992922, 465769813, 749973302, 749973314, 1208198617, 1208198629
Offset: 1
n=4: prime(n-1) + prime(n+1) = 5 + 11 = 16 = 4*n,
n=20: 67 + 73 = 140 = 7*n,
n=16899042: 312632263 + 312632291 = 625264554 = 37*n,
n=69709721: 1394194387 + 1394194453 = 2788388840 = 40*n.
-
[n: n in [2..7*10^3], k in [2..7*10^3] | (NthPrime(n-1) + NthPrime(n+1)) eq n*k]; // Vincenzo Librandi, Aug 07 2015
-
Select[Range[2, 100000], Mod[Prime[# - 1] + Prime[# + 1], #] == 0 &] (* Michael De Vlieger, Aug 07 2015 *)
-
a=2;b=5;for(n=2,10^8,c=a+b;if(c%n<1,print1(n", "));a=nextprime(a+1);b=nextprime(b+1))
-
p=2;q=3;n=1; forprime(r=5,1e9, if((p+r)%n++==0, print1(n", "));p=q;q=r) \\ Charles R Greathouse IV, Aug 10 2015
Showing 1-3 of 3 results.
Comments