A156269 Denominators of a series expansion for Pi/2.
1, 2, 6, -20, -24, -56, 144, 160, 352, -832, -896, -1920, 4352, 4608, 9728, -21504, -22528, -47104, 102400, 106496, 221184, -475136, -491520, -1015808, 2162688, 2228224, 4587520, -9699328, -9961472, -20447232, 42991616, 44040192, 90177536
Offset: 0
Links
- V. Adamchik and S. Wagon, Pi: A 2000-Year Search Changes Direction
- Index entries for linear recurrences with constant coefficients, signature (0, 0, -8, 0, 0, -16).
Programs
-
Maple
A156269 := n -> if `mod`(n, 3) = 0 then (-4)^(n/3)*(4*n/3 + 1) elif `mod`(n, 3) = 1 then (-4)^((n-1)/3)*(4*(n-1)/3 + 2) else (-4)^((n-2)/3)*(8*(n-2)/3 + 6) end if: seq(A156269(n), n = 1 .. 35); # Peter Bala, Jun 16 2016
-
Mathematica
CoefficientList[Series[(1+2x+6x^2-12x^3-8x^4-8x^5)/(1+4x^3)^2,{x,0,40}],x] (* or *) LinearRecurrence[{0,0,-8,0,0,-16},{1,2,6,-20,-24,-56},40] (* Harvey P. Dale, Dec 16 2016 *)
Formula
G.f.: (1+2*x+6*x^2-12*x^3-8*x^4-8*x^5)/(1+4*x^3)^2.
From Peter Bala, Jun 16 2016: (Start)
a(3*n) = (-4)^n*(4*n + 1);
a(3*n + 1) = (-4)^n*(4*n + 2);
a(3*n + 2) = (-4)^n*(8*n + 6). (End)
Comments