cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A358864 a(n) is the smallest n-gonal pyramidal number with exactly n distinct prime factors.

Original entry on oeis.org

84, 1785, 299880, 1020510, 8897460, 102612510, 33367223274, 249417828660, 9177835927260, 10064864238489060, 5558913993302670, 15633689593760207970, 3792821921183752657200
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal pyramidal numbers are 7, 17, 84, 115, 220, 468, 3058, 5719, 18290, ...

Examples

			a(3) = 84, because 84 is a tetrahedral (or triangular pyramidal) number with 3 distinct prime factors {2, 3, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(k+1)*((n-2)*k + (5-n)))\6); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 05 2022

Extensions

a(12)-a(15) from Daniel Suteu, Dec 05 2022

A358927 a(n) is the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists.

Original entry on oeis.org

1, -1, 4, 20, 56, 120, 560, 4960, 19600, 41664, 341376, 695520, 7207200, 22238720, 178433024, 1429559296, 179481600, 11453245440, 11444858880, 393079864320, 3928874471424, 5864598896640, 46910348656640, 975649558118400, 3002365391929344, 7805131503206400
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(4) = 56, because 56 is a tetrahedral number with 4 prime factors (counted with multiplicity) {2, 2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    t[k_] := k*(k + 1)*(k + 2)/6; a[n_] := Module[{k = 1, tk}, While[PrimeOmega[tk = t[k]] != n, k++]; tk]; a[1] = -1; Array[a, 26, 0] (* Amiram Eldar, Dec 09 2022 *)

A358928 a(n) is the smallest centered triangular number with exactly n distinct prime factors.

Original entry on oeis.org

1, 4, 10, 460, 9010, 772210, 20120860, 1553569960, 85507715710, 14932196985010, 1033664429333260, 197628216951078460, 21266854897681220860, 7423007155473283614010, 3108276166302017120182510, 851452464506763307285599610, 32749388246772812069108696710
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Comments

a(n) cannot be divisible by a bunch of primes like 3, 7, 11, 13, ... as (3*k^2 + 3*k + 2)/2 is never a multiple of any of them. - David A. Corneth, Dec 12 2022
a(16) <= 1421044357661885128003268103460. - David A. Corneth, Dec 14 2022

Examples

			a(4) = 9010, because 9010 is a centered triangular number with 4 distinct prime factors {2, 5, 17, 53} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[k_] := (3*k^2 + 3*k + 2)/2; a[n_] := Module[{k = 0, ck}, While[PrimeNu[ck = c[k]] != n, k++]; ck]; Array[a, 9, 0] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = for(k=0, oo, my(t=3*k*(k+1)/2 + 1); if(omega(t) == n, return(t))); \\ Daniel Suteu, Dec 10 2022

Extensions

a(9)-a(11) from Daniel Suteu, Dec 10 2022
a(12)-a(13) from David A. Corneth, Dec 12 2022
a(13) corrected by Daniel Suteu, Dec 13 2022
a(14)-a(15) from David A. Corneth, Dec 14 2022
a(16) from Daniel Suteu, Dec 14 2022
a(15) corrected by Daniel Suteu, Dec 15 2022

A321852 a(n) is the smallest m for which binomial(m, 6) has exactly n distinct prime factors.

Original entry on oeis.org

6, 7, 8, 9, 10, 18, 26, 40, 77, 120, 210, 477, 715, 2227, 3290, 9065, 17020, 49915, 139195, 240465, 721929, 1124840, 4455445, 16319578, 26683220, 105655905, 134879176, 677868170, 3290262264
Offset: 0

Views

Author

Zachary M Franco, Nov 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{m=6, t=1}, While[PrimeNu[t] != n, m++; t*=m/(m-6)]; m]; Array[a, 20] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    a(n)={my(m=6, t=1); while(omega(t)<>n, m++; t*=m/(m-6)); m} \\ Andrew Howroyd, Nov 26 2018

Extensions

a(22)-a(28) from Giovanni Resta, Nov 27 2018
a(0) prepended by Jianing Song, Dec 31 2018

A359089 a(n) is the index of the smallest tetrahedral number with exactly n distinct prime factors.

Original entry on oeis.org

1, 2, 3, 7, 18, 34, 90, 259, 988, 2583, 5795, 37960, 101268, 424268, 3344614, 17168723, 74282570, 351200178, 1082950218, 5313193819, 31439710664, 317760710839, 1782400663483
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    r = -1; Reap[Do[If[# > r, r = #; Sow[n]] &[PrimeNu[n (n + 1) (n + 2)/6]], {n, 2^19}] ][[-1, -1]] (* Michael De Vlieger, Dec 19 2022 *)
  • PARI
    t(n) = n*(n+1)*(n+2)/6; \\ A000292
    a(n) = my(k=1); while (omega(t(k)) != n, k++); k; \\ Michel Marcus, Dec 19 2022

A359229 a(n) is the smallest square pyramidal number with exactly n distinct prime factors.

Original entry on oeis.org

1, 5, 14, 30, 1785, 6930, 149226, 3573570, 139223370, 3708968340, 62366724420, 2279301054030, 1348519628145690, 27928822496705130, 1558931949520935990, 430616881400429491950, 161887663616926971163440
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2022

Keywords

Examples

			a(4) = 1785, because 1785 is a square pyramidal number with 4 distinct prime factors {3, 5, 7, 17} and this is the smallest such number.
		

Crossrefs

Extensions

a(16) from Jon E. Schoenfield, Dec 22 2022
Showing 1-6 of 6 results.