cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156650 Positive numbers y such that y^2 is of the form x^2+(x+119)^2 with integer x.

Original entry on oeis.org

85, 89, 91, 101, 119, 145, 175, 185, 221, 289, 349, 371, 461, 595, 769, 959, 1021, 1241, 1649, 2005, 2135, 2665, 3451, 4469, 5579, 5941, 7225, 9605, 11681, 12439, 15529, 20111, 26045, 32515, 34625, 42109, 55981, 68081, 72499, 90509, 117215, 151801
Offset: 1

Views

Author

Klaus Brockhaus, Feb 17 2009

Keywords

Comments

(-51, a(1)), (-39, a(2)), (-35, a(3)), (-20, a(4)) and (A129837(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 1.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {3, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {4, 7}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {5, 6}.

Examples

			(-51, a(1)) = (-51, 85) is a solution: (-51)^2+(-51+119)^2 = 2601+4624 = 7225 = 85^2.
(A129837(1), a(5)) = (0, 119) is a solution: 0^2+(0+119)^2 = 14161 = 119^2.
(A129837(3), a(7)) = (49, 175) is a solution: 49^2+(49+119)^2 = 2401+28224 = 30625 = 175^2.
		

Crossrefs

Cf. A129837, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • Mathematica
    upto=200000; With[{max=Ceiling[(Sqrt[2*upto^2]-119)/2]},Union[ Sqrt[#]&/@ Select[Table[x^2+(x+119)^2,{x,-250,max}],IntegerQ[Sqrt[#]]&]]](* Harvey P. Dale, Aug 11 2011 *)
  • PARI
    {forstep(n=-52, 120000, [1, 3], if(issquare(n^2+(n+119)^2, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18) for n > 18; a(1)=85, a(2)=89, a(3)=91, a(4)=101, a(5)=119, a(6)=145, a(7)=175, a(8)=185, a(9)=221, a(10)=289, a(11)=349, a(12)=371, a(13)=461, a(14)=595, a(15)=769, a(16)=959, a(17)=1021, a(18)=1241.
G.f.: x * (1-x) * (85 +174*x +265*x^2 +366*x^3 +485*x^4 +630*x^5 +805*x^6 +990*x^7 +1211*x^8 +990*x^9 +805*x^10 +630*x^11 +485*x^12 +366*x^13 +265*x^14 +174*x^15 +85*x^16) / (1 -6*x^9 +x^18). [adapted to the offset by Bruno Berselli, Apr 01 2011]