cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A156649 Decimal expansion of (9+4*sqrt(2))/7.

Original entry on oeis.org

2, 0, 9, 3, 8, 3, 6, 3, 2, 1, 3, 5, 6, 0, 5, 4, 3, 1, 3, 6, 0, 0, 9, 6, 4, 9, 8, 5, 2, 6, 2, 6, 8, 4, 6, 1, 6, 3, 2, 5, 5, 2, 6, 7, 8, 5, 9, 2, 9, 6, 8, 4, 6, 1, 3, 2, 4, 3, 8, 1, 6, 9, 9, 3, 1, 3, 7, 5, 6, 1, 4, 1, 6, 2, 6, 4, 0, 6, 1, 1, 6, 5, 0, 5, 7, 3, 6, 4, 3, 0, 5, 3, 3, 0, 0, 8, 0, 8, 9, 8, 7, 0, 5, 7, 2
Offset: 1

Views

Author

Klaus Brockhaus, Feb 13 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {1, 2}, b = A129837, A156650.

Examples

			(9+4*sqrt(2))/7 = 2.09383632135605431360...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)). A156163 (decimal expansion of (19+6*sqrt(2))/17), A129837, A156650.

Programs

  • Mathematica
    RealDigits[(9 + 4*Sqrt[2])/7, 10, 100][[1]] (* G. C. Greubel, Jul 05 2017 *)
  • PARI
    (9+4*sqrt(2))/7 \\ G. C. Greubel, Jul 05 2017

A129837 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.

Original entry on oeis.org

0, 24, 49, 57, 85, 136, 180, 196, 261, 357, 481, 616, 660, 816, 1105, 1357, 1449, 1824, 2380, 3100, 3885, 4141, 5049, 6732, 8200, 8736, 10921, 14161, 18357, 22932, 24424, 29716, 39525, 48081, 51205, 63940, 82824, 107280, 133945, 142641, 173485, 230656
Offset: 1

Views

Author

Mohamed Bouhamida, May 21 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+119, y).
Corresponding values y of solutions (x, y) are in A156650.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {0, 3}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {4, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {5, 7}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 6.

Crossrefs

Cf. A156650, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17), A118630.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,24,49,57,85,136,180,196,261,357,481,616,660,816,1105,1357,1449,1824,2380}, 140] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 240000, [1, 3], if(issquare(n^2+(n+119)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+238 for n > 18; a(1)=0, a(2)=24, a(3)=49, a(4)=57, a(5)=85, a(6)=136, a(7)=180, a(8)=196, a(9)=261, a(10)=357, a(11)=481, a(12)=616, a(13)=660, a(14)=816, a(15)=1105, a(16)=1357, a(17)=1449, a(18)=1824.
G.f.: x*(24+25*x+8*x^2+28*x^3+51*x^4+44*x^5+16*x^6+65*x^7+96*x^8-20*x^9-15*x^10-4*x^11-12*x^12-17*x^13-12*x^14-4*x^15-15*x^16-20*x^17 )/((1-x)*(1-6*x^9+x^18))

Extensions

Edited and extended by Klaus Brockhaus, Feb 13 2009
Showing 1-2 of 2 results.