cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A077443 Numbers k such that (k^2 - 7)/2 is a square.

Original entry on oeis.org

3, 5, 13, 27, 75, 157, 437, 915, 2547, 5333, 14845, 31083, 86523, 181165, 504293, 1055907, 2939235, 6154277, 17131117, 35869755, 99847467, 209064253, 581953685, 1218515763, 3391874643, 7102030325, 19769294173, 41393666187, 115223890395, 241259966797, 671574048197
Offset: 1

Views

Author

Gregory V. Richardson, Nov 06 2002

Keywords

Comments

Lim_{n -> inf} a(n)/a(n-2) = 3 + 2*sqrt(2) = R1*R2. Lim_{k -> inf} a(2*k-1)/a(2*k) = (9 + 4*sqrt(2))/7 = R1 = A156649 (ratio #1). Lim_{k -> inf} a(2*k)/a(2*k-1) = (11 + 6*sqrt(2))/7 = R2 (ratio #2).
Also gives solutions > 3 to the equation x^2-4 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
From Paul Curtz, Dec 15 2012: (Start)
a(n-1) and A006452(n) are companions. Like A000129 and A001333.
Reduced mod 10 this is a sequence of period 12: 3, 5, 3, 7, 5, 7, 7, 5, 7, 3, 5, 3.
(End)
The Pisano periods (periods of the sequence reducing a(n) modulo m) for m>=1 are 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, ... R. J. Mathar, Dec 15 2012
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 56 = 0. - Colin Barker, Feb 08 2014
From Wolfdieter Lang, Feb 05 2015: (Start)
a(n+1) gives for n >= 0 all positive x solutions of the (generalized) Pell equation x^2 - 2*y^2 = +7.
The corresponding y solutions are given in A077442(n), n >= 0. The, e.g., the Nagell reference for finding all solutions.
Because the primitive Pythagorean triangle (3,4,5) is the only one with the sum of legs equal to 7 all positive solutions (x(n),y(n)) = (a(n+1),A077442(n)) of the Pell equation x^2 - 2*y^2 = +7 satisfy x(n) - y(n) < y(n) if n >= 1; only the first solution (x(0),y(0)) = (3,2) satisfies 3-1 > 1. Proof: Primitive Pythagorean triangles are characterized by the positive integer pairs [u,v] with u+v odd, gcd(u,v) = 1 and u > v. See the Niven et al. reference, Theorem 5.5, p. 232. The leg sum is L = (u+v)^2 - 2*v^2. With L = 7, x = u+v and y = v, every solution (x(n),y(n)) with x(n)-y(n) = u(n) > v(n) = y(n) will correspond to a primitive Pythagorean triangle. Note that because of gcd(x,y) = 1 also gcd(u,v) = 1. But there is only one such triangle with L=7, namely the one with [u(0),v(0)] = [2,1]. All other solutions with n >= 1 must therefore satisfy x(n)-y(n) < y(n). (End)
For n > 0, a(n+1) is the n-th almost Lucas-cobalancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Examples

			a(3)^2 - 2*A077442(2)^2 = 13^2 - 2*9^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
		

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{3,5,13,27},50] (* Sture Sjöstedt, Oct 09 2012 *)

Formula

a(2n+1) = A038762(n). a(2n) = A101386(n-1).
The same recurrences hold for the odd and the even indices: a(n+2) = 6*a(n) - a(n-2), a(n+1) = 3*a(n) + 2*(2*a(n)^2-14)^0.5 - Richard Choulet, Oct 11 2007
O.g.f.: -x*(x-1)*(3*x^2+8*x+3) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Nov 23 2007
If n is even a(n) = (1/2)*(3+sqrt(2))*(3+2*sqrt(2))^(-n/2) + (1/2)*(3-sqrt(2))*(3-2*sqrt(2))^(-n/2); if n is odd a(n) = (1/2)*(3+sqrt(2))*(3+2*sqrt(2))^((n-1)/2) + (1/2)*(3-sqrt(2))*(3-2*sqrt(2))^((n-1)/2). - Antonio Alberto Olivares, Apr 20 2008
a(n) = A000129(n+1) + (-1)^n*A176981(n-1), n>1. - R. J. Mathar, Jul 03 2011
a(n) = A000129(n+1) -(-1)^n*A000129(n-2), rephrasing the formula above. - Paul Curtz, Dec 07 2012
a(n) = sqrt(8*A216134(n)^2 + 8*A216134(n) + 9) = 2*A124124(n) + 1. - Raphie Frank, May 24 2013
E.g.f.: cosh(sqrt(2)*x)*(3*cosh(x) - sinh(x)) + sqrt(2)*(2*cosh(x) - sinh(x))*sinh(sqrt(2)*x) - 3. - Stefano Spezia, Nov 25 2022

Extensions

More terms from Richard Choulet, Oct 11 2007
Edited: replaced n by a(n) in the name. Moved Pell remarks to the comment section. Added cross references. - Wolfdieter Lang, Feb 05 2015

A076296 Consider all Pythagorean triples (X,X+7,Z); sequence gives X values.

Original entry on oeis.org

-3, 0, 5, 8, 21, 48, 65, 140, 297, 396, 833, 1748, 2325, 4872, 10205, 13568, 28413, 59496, 79097, 165620, 346785, 461028, 965321, 2021228, 2687085, 5626320, 11780597, 15661496, 32792613, 68662368, 91281905, 191129372, 400193625, 532029948, 1113983633
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
From Klaus Brockhaus, Feb 18 2009: (Start)
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (9+4*sqrt(2))/7 for n mod 3 = {1, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 3 = 0. (End)
For the generic case x^2 + (x+p)^2 = y^2 with p=2*m^2-1 a prime number in A066436, m >= 2, the x values are given by the sequence defined by: a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21. Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number, m>=2, the first three consecutive solutions are: (0;p), (2*m+1; 2*m^2+2*m+1), (6*m^2-10*m+4; 10*m^2-14*m+5) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2*p). - Mohamed Bouhamida, Aug 20 2019

Examples

			8 is in the sequence as the shorter leg of the (8,15,17) triangle.
		

Crossrefs

Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7). - Klaus Brockhaus, Feb 18 2009

Programs

  • Magma
    I:=[-3,0,5,8,21,48,65]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    CoefficientList[Series[(3-3x-5x^2-21x^3+5x^4+3x^5+4x^6)/(-1+x+6x^3-6x^4-x^6+x^7),{x,0,50}],x] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {-3,0,5,8,21,48,65}, 50] (* T. D. Noe, Feb 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((-3+3*x+5*x^2+21*x^3-5*x^4-3*x^5-4*x^6)/((1-x)*(1-6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6a(n-3) - a(n-6) + 14 = (A076293(n) - 7)/2.
a(n) = sqrt(A076294(n)^2 - A076295(n)^2) = A076295(n) - 7.
a(3*n+1) = 7*A001652(n).
From Mohamed Bouhamida, Jul 06 2007: (Start)
a(n) = 5*(a(n-3) + a(n-6)) - a(n-9) + 28.
a(n) = 7*(a(n-3) - a(n-6)) + a(n-9). (End)
G.f.: (-3 + 3*x + 5*x^2 + 21*x^3 - 5*x^4 - 3*x^5 - 4*x^6)/((1-x)*(1 - 6*x^3 + x^6)). - Klaus Brockhaus, Feb 18 2009

Extensions

More terms from Klaus Brockhaus, Feb 18 2009

A077446 Numbers k such that 2*k^2 + 14 is a square.

Original entry on oeis.org

1, 5, 11, 31, 65, 181, 379, 1055, 2209, 6149, 12875, 35839, 75041, 208885, 437371, 1217471, 2549185, 7095941, 14857739, 41358175, 86597249, 241053109, 504725755, 1404960479, 2941757281, 8188709765, 17145817931, 47727298111
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "2*n^2 + 14 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = 14.
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = (7+n^2)/2. - Ctibor O. Zizka, Nov 09 2009
From Wolfdieter Lang, Feb 26 2015: (Start)
This sequence gives all positive solutions x = a(n+1), n >= 0, of the Pell equation x^2 - 2*y^2 = -7. For the corresponding y-solutions see y(n) = 2*A006452(n+2) = A077447(n+1)/2. This implies that X^2 - 2*Y^2 = 14 has the general solutions (X(n),Y(n)) = (2*y(n), x(n)). See the first comment above.
For the positive first class solutions see (A054490(n), 2*A038723(n)) and for the second class solutions (A255236(n), 2*A038725(n+1)). (End)
For n > 0, a(n) is the n-th almost Lucas-balancing number of second type (see Tekcan and Erdem). - Stefano Spezia, Nov 26 2022

Examples

			n = 3: (A077447(3))^2 - 2*a(3)^2 = 16^2 - 2*11^2  = 14;
a(3)^2 - 2*(2*A006452(3+1))^2 = 11^2 - 2*(2*4)^2 = -7. - _Wolfdieter Lang_, Feb 26 2015
		

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{1,5,11,31},50] (* Sture Sjöstedt, Oct 08 2012 *)

Formula

2*(a(n))^2 + 14 = (A077447(n))^2.
Lim. n-> Inf. a(n)/a(n-2) = 5.8284271247461... = 3 + 2*sqrt(2) = A156035 = RG (Great Ratio).
Lim. k-> Inf. a(2*k+1)/a(2*k) = 2.09383632135605... = (9 + 4*sqrt(2))/7 = A156649 = R1 (Ratio 1).
Lim. k -> Inf. a(2*k)/a(2*k-1) = 2.78361162489122432754 = (11 + 6*sqrt(2))/7 = R2 (Ratio 2); RG = R1*R2.
a(2*k-1) = [ 2*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] - [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] + [(3+2*Sqrt(2))^(n-2) - (3-2*Sqrt(2))^(n-2)] ] / (4*Sqrt(2)) a(2*k) = [ 5*[(3+2*Sqrt(2))^n - (3-2*Sqrt(2))^n] + [(3+2*Sqrt(2))^(n-1) - (3-2*Sqrt(2))^(n-1)] ] / (4*Sqrt(2)).
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1+x)*(x^2+4*x+1) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Jul 03 2011
a(n) = 6*a(n-2) - a(n-4) with a(1)=1, a(2)=5, a(3)=11, a(4)=31. - Sture Sjöstedt, Oct 08 2012
Bisection: a(2*k+1) = S(k, 6) + 5*S(k-1, 6), a(2*k) = 5*S(k-1, 6) + S(k-2, 6), with the Chebyshev polynomials S(n, x) (A049310) with S(-2, x) = -1, S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n+1). See A054490 and A255236, and the given g.f.s. - Wolfdieter Lang, Feb 26 2015
E.g.f.: 1 - cosh(sqrt(2)*x)*(cosh(x) - 3*sinh(x)) - sqrt(2)*(cosh(x) - 2*sinh(x))*sinh(sqrt(2)*x). - Stefano Spezia, Nov 26 2022
a(n) = a(n-1) + 2*A217975(n-1) + A123335(n-2) - A123335(n-3) for n > 1 and with A123335(-1) = 1. - Vladimir Pletser, Aug 30 2025

A118611 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.

Original entry on oeis.org

0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860, 9177, 10904, 14553, 19404, 25853, 30660, 40817, 54320, 64385, 85652, 113925, 151512, 179529, 238728, 317429, 376092, 500045, 664832, 883905, 1047200, 1392237, 1850940, 2192853
Offset: 1

Views

Author

Mohamed Bouhamida, May 08 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+343, y); 343=7^3.
Corresponding values y of solutions (x, y) are in A157246.
Limit_{n -> oo} a(n)/a(n-7) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 7 = {1, 2, 4, 5, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 7 = {0, 3}.

Examples

			132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
		

Crossrefs

Cf. A157246, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, -1, 1}, {0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 1400000, [1, 3], if(issquare(n^2+(n+343)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-7)-a(n-14)+686 for n > 14; a(1)=0, a(2)=77, a(3)=132, a(4)=245, a(5)=392, a(6)=585, a(7)=728, a(8)=1029, a(9)=1428, a(10)=1725, a(11)=2352, a(12)=3185, a(13)=4292, a(14)=5117.
G.f.: x*(77+55*x+113*x^2+147*x^3+193*x^4+143*x^5+301*x^6-63*x^7 -33*x^8-51*x^9-49*x^10-51*x^11-33*x^12-63*x^13)/((1-x)*(1-6*x^7+x^14)).
a(7*k+1) = 343*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A118576 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.

Original entry on oeis.org

0, 2145, 3773, 6468, 8540, 12005, 19208, 24521, 28665, 35672, 41148, 50421, 61388, 69972, 84525, 95921, 115248, 156065, 186480, 210308, 250733, 282405, 336140, 399797, 449673, 534296, 600600, 713097, 950796, 1127973, 1266797, 1502340
Offset: 1

Views

Author

Mohamed Bouhamida, May 16 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+16807, y); 16807 = 7^5.
Corresponding values y of solutions (x, y) are in A156713.
Limit_{n -> oo} a(n)/a(n-11) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {1, 2, 4, 6, 8, 10}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {0, 3, 5, 9}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 7.

Crossrefs

Cf. A156713, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1600000, [1, 3], if(issquare(2*n^2 + 33614*n + 282475249), print1(n, ",")))}

Formula

a(n) = 6*a(n-11)-a(n-22)+33614 for n > 22; a(1) = 0, a(2) = 2145, a(3) = 3773, a(4) = 6468, a(5) = 8540, a(6) = 12005, a(7) = 19208, a(8) = 24521, a(9) = 28665, a(10) = 35672, a(11) = 41148, a(12) = 50421, a(13) = 61388, a(14) = 69972, a(15) = 84525, a(16) = 95921, a(17) = 115248, a(18) = 156065, a(19) = 186480, a(20) = 210308, a(21) = 250733, a(22) = 282405.
G.f.: x*(2145+1628*x+2695*x^2+2072*x^3+3465*x^4+7203*x^5+5313*x^6+4144*x^7+7007*x^8+5476*x^9+9273*x^10-1903*x^11-1184*x^12-1617*x^13-1036*x^14-1463*x^15-2401*x^16-1463*x^17 -1036*x^18-1617*x^19-1184*x^20-1903*x^21 )/((1-x)*(1-6*x^11+x^22)).

Extensions

Edited by Klaus Brockhaus, Feb 14 2009

A118630 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.

Original entry on oeis.org

0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1

Views

Author

Mohamed Bouhamida, May 09 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+2401, y); 2401=7^4.
Corresponding values y of solutions (x, y) are in A157247.
Limit_{n -> oo} a(n)/a(n-9) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 2, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 3, 5, 7}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {4, 8}.

Examples

			924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
		

Crossrefs

Cf. A157247, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+4802 for n > 18; a(1)=0, a(2)=539, a(3)=924, a(4)=1220, a(5)=1715, a(6)=2744, a(7)=3503, a(8)=4095, a(9)=5096, a(10)=7203, a(11)=9996, a(12)=12075, a(13)=13703, a(14)=16464,a (15)=22295, a(16)=26640, a(17)=30044, a(18)=35819.
G.f.: x*(539+385*x+296*x^2+495*x^3+1029*x^4+759*x^5+592*x^6 +1001*x^7+2107*x^8-441*x^9-231*x^10-148*x^11-209*x^12-343*x^13 -209*x^14-148*x^15-231*x^16-441*x^17) / ((1-x)*(1-6*x^9+x^18)).
a(9*k+1) = 2401*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A129837 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.

Original entry on oeis.org

0, 24, 49, 57, 85, 136, 180, 196, 261, 357, 481, 616, 660, 816, 1105, 1357, 1449, 1824, 2380, 3100, 3885, 4141, 5049, 6732, 8200, 8736, 10921, 14161, 18357, 22932, 24424, 29716, 39525, 48081, 51205, 63940, 82824, 107280, 133945, 142641, 173485, 230656
Offset: 1

Views

Author

Mohamed Bouhamida, May 21 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+119, y).
Corresponding values y of solutions (x, y) are in A156650.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {0, 3}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {4, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {5, 7}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 6.

Crossrefs

Cf. A156650, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17), A118630.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,24,49,57,85,136,180,196,261,357,481,616,660,816,1105,1357,1449,1824,2380}, 140] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 240000, [1, 3], if(issquare(n^2+(n+119)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+238 for n > 18; a(1)=0, a(2)=24, a(3)=49, a(4)=57, a(5)=85, a(6)=136, a(7)=180, a(8)=196, a(9)=261, a(10)=357, a(11)=481, a(12)=616, a(13)=660, a(14)=816, a(15)=1105, a(16)=1357, a(17)=1449, a(18)=1824.
G.f.: x*(24+25*x+8*x^2+28*x^3+51*x^4+44*x^5+16*x^6+65*x^7+96*x^8-20*x^9-15*x^10-4*x^11-12*x^12-17*x^13-12*x^14-4*x^15-15*x^16-20*x^17 )/((1-x)*(1-6*x^9+x^18))

Extensions

Edited and extended by Klaus Brockhaus, Feb 13 2009

A077447 Numbers k such that (k^2 - 14)/2 is a square.

Original entry on oeis.org

4, 8, 16, 44, 92, 256, 536, 1492, 3124, 8696, 18208, 50684, 106124, 295408, 618536, 1721764, 3605092, 10035176, 21012016, 58489292, 122467004, 340900576, 713790008, 1986914164, 4160273044, 11580584408, 24247848256, 67496592284
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(n^2 - 14)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = 14.

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Cf. A156649 (R1).

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{4,8,16,44},40] (* Harvey P. Dale, Jul 22 2013 *)

Formula

Limit_{k -> oo} a(2*k+1)/a(2*k) = 2.09383632135605431360 = (9 + 4*sqrt(2))/7 = R1.
Limit_{k -> oo} a(2*k)/a(2*k-1) = 2.78361162489122432754 = (11 + 6*sqrt(2))/7 = R2.
Limit_{k -> oo} a(n)/a(n-2) = 3 + 2*sqrt(2) = RG (Grand Ratio); RG = R1*R2.
For n = 2*k-1, a(n) = [ 2*[(3+2*sqrt(2))^n + (3-2*sqrt(2))^n] - [(3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1)] + [(3+2*sqrt(2))^(n-2) + (3-2*sqrt(2))^(n-2)] ] / 4.
For n = 2*k, a(n) = [ 5*[(3+2*sqrt(2))^n + (3-2*sqrt(2))^n] + [(3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1)] ] / 4.
a(n) = 6*a(n-2) - a(n-4) = 4*A006452(n).
G.f.: -4*x*(x-1)*(x^2+3*x+1) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Jul 03 2011

A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.

Original entry on oeis.org

0, 124, 168, 187, 343, 399, 595, 624, 915, 952, 1260, 1372, 1768, 1827, 1975, 2499, 3135, 3367, 3468, 4312, 4620, 5712, 5875, 7524, 7735, 9499, 10143, 12427, 12768, 13624, 16660, 20352, 21700, 22287, 27195, 28987, 35343, 36292, 45895, 47124
Offset: 1

Views

Author

Mohamed Bouhamida, May 27 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+833, y); 833=7^2*17.
Corresponding values y of solutions (x, y) are in A156835.
lim_{n -> infinity} a(n)/a(n-15) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 15 = {1, 2, 5, 7, 11, 13}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 15 = {0, 3, 6, 12}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*((19+6*sqrt(2))/17)/((9+4*sqrt(2))/7)^3 for n mod 15 = {4, 8, 10, 14}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^4/((3+2*sqrt(2))*((19+6*sqrt(2))/17)^2) for n mod 15 = 9.

Examples

			124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
		

Crossrefs

Cf. A156835, A076296, A118120, A118554, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • PARI
    {forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}

Formula

a(n) = 6*a(n-15)-a(n-30)+1666 for n > 30; a(1) = 0, a(2) = 124, a(3) = 168, a(4) = 187, a(5) = 343, a(6) = 399, a(7) = 595, a(8) = 624, a(9) = 915, a(10) = 952, a(11) = 1260, a(12) = 1372, a(13) = 1768, a(14) = 1827, a(15) = 1975, a(16) = 2499, a(17) = 3135, a(18) = 3367, a(19) = 3468, a(20) = 4312, a(21) = 4620, a(22) = 5712, a(23) = 5875, a(24) = 7524, a(25) = 7735, a(26) = 9499, a(27) = 10143, a(28) = 12427, a(29) = 12768, a(30) = 13624.
G.f.: x*(124+44*x+19*x^2+156*x^3+56*x^4+196*x^5+29*x^6+291*x^7+37*x^8+308*x^9+112*x^10+396*x^11+59*x^12+148*x^13+524*x^14-108*x^15-32*x^16-13*x^17-92*x^18-28*x^19-84*x^20-11*x^21-97*x^22-11*x^23-84*x^24-28*x^25-92*x^26-13*x^27-32*x^28-108*x^29)/((1-x)*(1-6*x^15+x^30)).

Extensions

Edited by Klaus Brockhaus, Feb 16 2009

A156650 Positive numbers y such that y^2 is of the form x^2+(x+119)^2 with integer x.

Original entry on oeis.org

85, 89, 91, 101, 119, 145, 175, 185, 221, 289, 349, 371, 461, 595, 769, 959, 1021, 1241, 1649, 2005, 2135, 2665, 3451, 4469, 5579, 5941, 7225, 9605, 11681, 12439, 15529, 20111, 26045, 32515, 34625, 42109, 55981, 68081, 72499, 90509, 117215, 151801
Offset: 1

Views

Author

Klaus Brockhaus, Feb 17 2009

Keywords

Comments

(-51, a(1)), (-39, a(2)), (-35, a(3)), (-20, a(4)) and (A129837(n), a(n+4)) are solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 1.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {3, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {4, 7}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {5, 6}.

Examples

			(-51, a(1)) = (-51, 85) is a solution: (-51)^2+(-51+119)^2 = 2601+4624 = 7225 = 85^2.
(A129837(1), a(5)) = (0, 119) is a solution: 0^2+(0+119)^2 = 14161 = 119^2.
(A129837(3), a(7)) = (49, 175) is a solution: 49^2+(49+119)^2 = 2401+28224 = 30625 = 175^2.
		

Crossrefs

Cf. A129837, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • Mathematica
    upto=200000; With[{max=Ceiling[(Sqrt[2*upto^2]-119)/2]},Union[ Sqrt[#]&/@ Select[Table[x^2+(x+119)^2,{x,-250,max}],IntegerQ[Sqrt[#]]&]]](* Harvey P. Dale, Aug 11 2011 *)
  • PARI
    {forstep(n=-52, 120000, [1, 3], if(issquare(n^2+(n+119)^2, &k), print1(k, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18) for n > 18; a(1)=85, a(2)=89, a(3)=91, a(4)=101, a(5)=119, a(6)=145, a(7)=175, a(8)=185, a(9)=221, a(10)=289, a(11)=349, a(12)=371, a(13)=461, a(14)=595, a(15)=769, a(16)=959, a(17)=1021, a(18)=1241.
G.f.: x * (1-x) * (85 +174*x +265*x^2 +366*x^3 +485*x^4 +630*x^5 +805*x^6 +990*x^7 +1211*x^8 +990*x^9 +805*x^10 +630*x^11 +485*x^12 +366*x^13 +265*x^14 +174*x^15 +85*x^16) / (1 -6*x^9 +x^18). [adapted to the offset by Bruno Berselli, Apr 01 2011]
Showing 1-10 of 14 results. Next