A077443
Numbers k such that (k^2 - 7)/2 is a square.
Original entry on oeis.org
3, 5, 13, 27, 75, 157, 437, 915, 2547, 5333, 14845, 31083, 86523, 181165, 504293, 1055907, 2939235, 6154277, 17131117, 35869755, 99847467, 209064253, 581953685, 1218515763, 3391874643, 7102030325, 19769294173, 41393666187, 115223890395, 241259966797, 671574048197
Offset: 1
a(3)^2 - 2*A077442(2)^2 = 13^2 - 2*9^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- J. J. O'Connor and E. F. Robertson, History of Pell's Equation
- J. P. Robertson, Solving the Generalized Pell Equation
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Cf.
A000129,
A001333,
A006452,
A038761,
A038762,
A077442,
A101386,
A124124,
A156649,
A176981,
A216134,
A253811.
-
LinearRecurrence[{0,6,0,-1},{3,5,13,27},50] (* Sture Sjöstedt, Oct 09 2012 *)
Edited: replaced n by a(n) in the name. Moved Pell remarks to the comment section. Added cross references. -
Wolfdieter Lang, Feb 05 2015
A076296
Consider all Pythagorean triples (X,X+7,Z); sequence gives X values.
Original entry on oeis.org
-3, 0, 5, 8, 21, 48, 65, 140, 297, 396, 833, 1748, 2325, 4872, 10205, 13568, 28413, 59496, 79097, 165620, 346785, 461028, 965321, 2021228, 2687085, 5626320, 11780597, 15661496, 32792613, 68662368, 91281905, 191129372, 400193625, 532029948, 1113983633
Offset: 0
8 is in the sequence as the shorter leg of the (8,15,17) triangle.
-
I:=[-3,0,5,8,21,48,65]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
-
CoefficientList[Series[(3-3x-5x^2-21x^3+5x^4+3x^5+4x^6)/(-1+x+6x^3-6x^4-x^6+x^7),{x,0,50}],x] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
LinearRecurrence[{1,0,6,-6,0,-1,1}, {-3,0,5,8,21,48,65}, 50] (* T. D. Noe, Feb 07 2012 *)
-
x='x+O('x^30); Vec((-3+3*x+5*x^2+21*x^3-5*x^4-3*x^5-4*x^6)/((1-x)*(1-6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
A077446
Numbers k such that 2*k^2 + 14 is a square.
Original entry on oeis.org
1, 5, 11, 31, 65, 181, 379, 1055, 2209, 6149, 12875, 35839, 75041, 208885, 437371, 1217471, 2549185, 7095941, 14857739, 41358175, 86597249, 241053109, 504725755, 1404960479, 2941757281, 8188709765, 17145817931, 47727298111
Offset: 1
n = 3: (A077447(3))^2 - 2*a(3)^2 = 16^2 - 2*11^2 = 14;
a(3)^2 - 2*(2*A006452(3+1))^2 = 11^2 - 2*(2*4)^2 = -7. - _Wolfdieter Lang_, Feb 26 2015
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- Michael De Vlieger, Table of n, a(n) for n = 1..2612
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- J. J. O'Connor and E. F. Robertson, Pell's Equation
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Eric Weisstein's World of Mathematics, Pell Equation
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Cf.
A001109,
A006452,
A038723,
A038725,
A049310,
A054490,
A077447,
A155765,
A156035,
A156649,
A255236.
-
LinearRecurrence[{0,6,0,-1},{1,5,11,31},50] (* Sture Sjöstedt, Oct 08 2012 *)
A118611
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+343)^2 = y^2.
Original entry on oeis.org
0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860, 9177, 10904, 14553, 19404, 25853, 30660, 40817, 54320, 64385, 85652, 113925, 151512, 179529, 238728, 317429, 376092, 500045, 664832, 883905, 1047200, 1392237, 1850940, 2192853
Offset: 1
132^2+(132+343)^2 = 17424+225625 = 243049 = 493^2.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,6,-6,0,0,0,0,0,-1,1).
-
LinearRecurrence[{1, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, -1, 1}, {0, 77, 132, 245, 392, 585, 728, 1029, 1428, 1725, 2352, 3185, 4292, 5117, 6860}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
-
{forstep(n=0, 1400000, [1, 3], if(issquare(n^2+(n+343)^2), print1(n, ",")))}
A118576
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.
Original entry on oeis.org
0, 2145, 3773, 6468, 8540, 12005, 19208, 24521, 28665, 35672, 41148, 50421, 61388, 69972, 84525, 95921, 115248, 156065, 186480, 210308, 250733, 282405, 336140, 399797, 449673, 534296, 600600, 713097, 950796, 1127973, 1266797, 1502340
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,0,0,-1,1).
-
{forstep(n=0, 1600000, [1, 3], if(issquare(2*n^2 + 33614*n + 282475249), print1(n, ",")))}
A118630
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.
Original entry on oeis.org
0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1
924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1).
-
{forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}
A129837
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.
Original entry on oeis.org
0, 24, 49, 57, 85, 136, 180, 196, 261, 357, 481, 616, 660, 816, 1105, 1357, 1449, 1824, 2380, 3100, 3885, 4141, 5049, 6732, 8200, 8736, 10921, 14161, 18357, 22932, 24424, 29716, 39525, 48081, 51205, 63940, 82824, 107280, 133945, 142641, 173485, 230656
Offset: 1
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 6, -6, 0, 0, 0, 0, 0, 0, 0, -1, 1).
-
LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,24,49,57,85,136,180,196,261,357,481,616,660,816,1105,1357,1449,1824,2380}, 140] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
-
{forstep(n=0, 240000, [1, 3], if(issquare(n^2+(n+119)^2), print1(n, ",")))}
A077447
Numbers k such that (k^2 - 14)/2 is a square.
Original entry on oeis.org
4, 8, 16, 44, 92, 256, 536, 1492, 3124, 8696, 18208, 50684, 106124, 295408, 618536, 1721764, 3605092, 10035176, 21012016, 58489292, 122467004, 340900576, 713790008, 1986914164, 4160273044, 11580584408, 24247848256, 67496592284
Offset: 1
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
-
LinearRecurrence[{0,6,0,-1},{4,8,16,44},40] (* Harvey P. Dale, Jul 22 2013 *)
A129010
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.
Original entry on oeis.org
0, 124, 168, 187, 343, 399, 595, 624, 915, 952, 1260, 1372, 1768, 1827, 1975, 2499, 3135, 3367, 3468, 4312, 4620, 5712, 5875, 7524, 7735, 9499, 10143, 12427, 12768, 13624, 16660, 20352, 21700, 22287, 27195, 28987, 35343, 36292, 45895, 47124
Offset: 1
124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
-
{forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}
Edited by Klaus Brockhaus, Feb 16 2009
A156650
Positive numbers y such that y^2 is of the form x^2+(x+119)^2 with integer x.
Original entry on oeis.org
85, 89, 91, 101, 119, 145, 175, 185, 221, 289, 349, 371, 461, 595, 769, 959, 1021, 1241, 1649, 2005, 2135, 2665, 3451, 4469, 5579, 5941, 7225, 9605, 11681, 12439, 15529, 20111, 26045, 32515, 34625, 42109, 55981, 68081, 72499, 90509, 117215, 151801
Offset: 1
(-51, a(1)) = (-51, 85) is a solution: (-51)^2+(-51+119)^2 = 2601+4624 = 7225 = 85^2.
(A129837(1), a(5)) = (0, 119) is a solution: 0^2+(0+119)^2 = 14161 = 119^2.
(A129837(3), a(7)) = (49, 175) is a solution: 49^2+(49+119)^2 = 2401+28224 = 30625 = 175^2.
Cf.
A129837,
A156035 (decimal expansion of 3+2*sqrt(2)),
A156649 (decimal expansion of (9+4*sqrt(2))/7),
A156163 (decimal expansion of (19+6*sqrt(2))/17).
-
upto=200000; With[{max=Ceiling[(Sqrt[2*upto^2]-119)/2]},Union[ Sqrt[#]&/@ Select[Table[x^2+(x+119)^2,{x,-250,max}],IntegerQ[Sqrt[#]]&]]](* Harvey P. Dale, Aug 11 2011 *)
-
{forstep(n=-52, 120000, [1, 3], if(issquare(n^2+(n+119)^2, &k), print1(k, ",")))}
Showing 1-10 of 14 results.
Comments