A364319
a(n) = (A077446(n) + 1)/2 for n >= 0.
Original entry on oeis.org
0, 1, 3, 6, 16, 33, 91, 190, 528, 1105, 3075, 6438, 17920, 37521, 104443, 218686, 608736, 1274593, 3547971, 7428870, 20679088, 43298625, 120526555, 252362878, 702480240, 1470878641, 4094354883, 8572908966, 23863649056, 49966575153, 139087539451
Offset: 0
The solutions (a(n), b(n)) begin:
n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
------------------------------------------------------------------------
a: 0 1 3 6 16 33 91 190 528 1105 3075 6438 17920 37521 104443 218686 ...
b: 1 1 2 4 11 23 64 134 373 781 2174 4552 12671 26531 73852 154634 ...
-
LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 3, 6, 16}, 31] (* Robert P. P. McKone, Aug 29 2023 *)
A006452
a(n) = 6*a(n-2) - a(n-4).
Original entry on oeis.org
1, 1, 2, 4, 11, 23, 64, 134, 373, 781, 2174, 4552, 12671, 26531, 73852, 154634, 430441, 901273, 2508794, 5253004, 14622323, 30616751, 85225144, 178447502, 496728541, 1040068261, 2895146102, 6061962064, 16874148071, 35331704123
Offset: 0
n = 3: 11^2 - 2*(2*4)^2 = -7 (see the Pell comment above);
(4*4)^2 - 2*11^2 = +14. - _Wolfdieter Lang_, Feb 26 2015
- A. J. Gottlieb, How four dogs meet in a field, etc., Technology Review, Jul/Aug 1973 pp. 73-74.
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. J. Gottlieb, How four dogs meet in a field, etc. (scanned copy)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- J. Shallit, Letter to N. J. A. Sloane, Oct. 1975
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
I:=[1,1,2,4]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 09 2013
-
A006452:=-(z-1)*(z**2+3*z+1)/(z**2+2*z-1)/(z**2-2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
-
s=0;lst={1}; Do[s+=n;If[Sqrt[s+1]==Floor[Sqrt[s+1]],AppendTo[lst, Sqrt[s+1]]], {n,0,8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
a[0]=a[1]= 1; a[2]=2; a[3]=4; a[n_]:= 6*a[n-2] -a[n-4]; Array[a, 30, 0] (* Robert G. Wilson v, Jun 11 2010 *)
CoefficientList[Series[(1+x-4x^2-2x^3)/((1-2x-x^2)(1+2x-x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^n*[1;1;2;4])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
def A001333(n): return lucas_number2(n, 2, -1)/2
def A006452(n): return (A001333(n+1) + (-1)^n *A001333(n-2))/4
[A006452(n) for n in range(41)] # G. C. Greubel, Jan 22 2023
A255236
All positive solutions x of the second class of the Pell equation x^2 - 2*y^2 = -7.
Original entry on oeis.org
5, 31, 181, 1055, 6149, 35839, 208885, 1217471, 7095941, 41358175, 241053109, 1404960479, 8188709765, 47727298111, 278175078901, 1621323175295, 9449763972869, 55077260661919, 321013799998645, 1871005539329951, 10905019435981061, 63559111076556415
Offset: 0
n = 2: 181^2 - 2*(2*64)^2 = -7; (4*64)^2 - 2*181^2 = 14.
n = 2: 2*53 + 75 = 181. - _Wolfdieter Lang_, Mar 19 2015
-
I:=[5,31]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
CoefficientList[Series[(5 + x) / (1 - 6 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
-
Vec((5 + x)/(1 - 6*x + x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
A217975
Integers k such that 2*k^2 - 7 is a square.
Original entry on oeis.org
2, 4, 8, 22, 46, 128, 268, 746, 1562, 4348, 9104, 25342, 53062, 147704, 309268, 860882, 1802546, 5017588, 10506008, 29244646, 61233502, 170450288, 356895004, 993457082, 2080136522, 5790292204, 12123924128, 33748296142, 70663408246, 196699484648
Offset: 1
Since 2(4^2) - 7 = 25 = 5^2, and 4 is the second number with this property, a(2) = 4.
Cf.
A077442 (2*n^2 + 7 is a square).
-
I:=[2, 4, 8, 22]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..31]]; // Vincenzo Librandi, Oct 16 2012
-
LinearRecurrence[{0, 6, 0, -1}, {2, 4, 8, 22}, 50] (* Sture Sjöstedt, Oct 16 2012 *)
-
Vec(2*x*(1-x)*(x^2+3*x+1)/(x^2-2*x-1)/(x^2+2*x-1)+O(x^99)) \\ Charles R Greathouse IV, Oct 24 2012
A358682
Numbers k such that 8*k^2 + 8*k - 7 is a square.
Original entry on oeis.org
1, 7, 43, 253, 1477, 8611, 50191, 292537, 1705033, 9937663, 57920947, 337588021, 1967607181, 11468055067, 66840723223, 389576284273, 2270616982417, 13234125610231, 77134136678971, 449570694463597, 2620290030102613, 15272169486152083, 89012726886809887, 518804191834707241
Offset: 1
a(2) = 7 is a term since 8*7^2 + 8*7 - 7 = 441 = 21^2.
-
LinearRecurrence[{7,-7,1},{1,7,43},24]
A175033
Numbers n such that (ceiling(sqrt(n*n/2)))^2 - n*n/2 = 17/2.
Original entry on oeis.org
9, 15, 55, 89, 321, 519, 1871, 3025, 10905, 17631, 63559, 102761, 370449, 598935, 2159135, 3490849, 12584361, 20346159, 73347031, 118586105, 427497825, 691170471
Offset: 1
-
lista(nn)=for (n=1, nn, if ((ceil(sqrt(n*n/2)))^2 - n*n/2 == 17/2, print1(n, ", "));); \\ Michel Marcus, Jun 02 2013
-
forstep(n=9,1e9,2, if((sqrtint(n^2\2)+1)^2==(n^2+17)/2, print1(n", "))) \\ Charles R Greathouse IV, Apr 30 2016
Showing 1-6 of 6 results.
Comments