A156676 a(n) = 81*n^2 - 44*n + 6.
6, 43, 242, 603, 1126, 1811, 2658, 3667, 4838, 6171, 7666, 9323, 11142, 13123, 15266, 17571, 20038, 22667, 25458, 28411, 31526, 34803, 38242, 41843, 45606, 49531, 53618, 57867, 62278, 66851, 71586, 76483, 81542, 86763, 92146, 97691, 103398, 109267, 115298, 121491
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[81*n^2 - 44*n + 6: n in [0..40] ];
-
Maple
A156676:=n->81*n^2-44*n+6: seq(A156676(n), n=0..100); # Wesley Ivan Hurt, Apr 26 2017
-
Mathematica
LinearRecurrence[{3,-3,1},{6,43,242},40] Table[81n^2-44n+6,{n,0,40}] (* Harvey P. Dale, Oct 29 2019 *)
-
PARI
a(n)=81*n^2-44*n+6 \\ Charles R Greathouse IV, Dec 23 2011
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (6 + 25*x + 131*x^2)/(1-x)^3.
E.g.f.: (6 + 37*x + 81*x^2)*exp(x). - Elmo R. Oliveira, Oct 19 2024
Extensions
Edited by Charles R Greathouse IV, Jul 25 2010
Comments