cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A195770 Positive integer a is repeated m times, where m is the number of 1-Pythagorean triples (a,b,c) satisfying a<=b.

Original entry on oeis.org

3, 5, 6, 7, 7, 9, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 17, 17, 18, 18, 19, 19, 20, 21, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32, 32, 33, 33, 33, 33
Offset: 1

Views

Author

Clark Kimberling, Sep 25 2011

Keywords

Comments

In case the number k=-cos(C) is a rational number, the law of cosines, c^2=a^2+b^2+k*a*b, can be regarded as a Diophantine equation having positive integer solutions a,b,c satisfying a<=b. The terms "k-Pythagorean triple" and "primitive k-Pythagorean triple" generalize the classical terms corresponding to the case k=0.
Example: the first five (3/2)-Pythagorean triples are
(5,18,22),(6,11,16),(9,11,71),(10,36,44),(12,22,32);
the first five primitive (3/2)-Pythagorean triples are
(5,18,22),(6,11,16),(9,64,71),(13,138,148),(14,75,86).
...
If |k|>2, there is no triangle with sidelengths a,b,c satisfying c^2=a^2+b^2+k*a*b, but this equation is, nevertheless, a Diophantine equation for rational k.
...
Related sequences (k-Pythagorean triples):
k...(a(1),b(1),c(1))........a(n).....b(n).....c(n)
0.......(3,4,5).............A009004..A156681..A156682
1.......(3,5,7).............A195770..A195866..A195867
3.......(3,7,11)............A196112..A196113..A196114
4.......(3,8,13)............A196119..A196120..A196121
5.......(1,3,5).............A196155..A196156..A196157
6.......(2,3,7).............A196162..A196163..A196164
7.......(1,1,3).............A196169..A196170..A196171
8.......(1,4,7).............A196176..A196177..A196178
9.......(1,15,19)...........A196183..A196184..A196185
10......(1,2,5).............A196238..A196239..A196240
1/2.....(2,3,4).............A195879..A195880..A195881
3/2.....(5,18,22)...........A195925..A195926..A195927
1/3.....(3,8,9).............A195939..A195940..A195941
2/3.....(4,9,11)............A196001..A196002..A196003
4/3.....(7,36,41)...........A196040..A196041..A196042
5/3.....(7,39,45)...........A196088..A196089..A196090
5/2.....(5,22,28)...........A196026..A196027..A196028
1/4.....(2,2,3).............A196259..A196260..A196261
3/4.....(2,6,7).............A196252..A196253..A196254
5/4.....(3,20,22)...........A196098..A196099..A196100
7/4.....(9,68,76)...........A196105..A196106..A196107
1/5.....(5,7,9).............A196348..A196349..A196350
1/8.....(4,10,11)...........A196355..A196356..A196357
-1......(1,1,1).............A195778..A195794..A195795
-3......(1,3,1).............A196369..A196370..A196371
-4......(1,4,1).............A196376..A196377..A196378
-5......(1,5,1).............A196383..A196384..A196385
-6......(1,6,1).............A196390..A196391..A196392
-1/2....(1,2,2).............A195872..A195873..A195874
-3/2....(2,3,2).............A195918..A195919..A195920
-5/2....(2,5,2).............A196362..A196363..A196364
-1/3....(1,3,3).............A195932..A195933..A195934
-2/3....(2,3,3).............A195994..A195995..A195996
-4/3....(3,4,3).............A196033..A196034..A196035
-5/3....(3,5,3).............A196008..A196009..A196083
-1/4....(1,4,4).............A196266..A196267..A196268
-3/4....(3,4,4).............A196245..A196247..A196248
...
Related sequences (primitive k-Pythagorean triples):
k...(a(1),b(1),c(1))........a(n).....b(n).....c(n)
0.......(3,4,5).............A020884..A156678..A156679
1.......(3,5,7).............A195868..A195869..A195870
3.......(3,7,11)............A196115..A196116..A196117
4.......(3,8,13)............A196122..A196123..A196124
5.......(1,3,5).............A196158..A196159..A196160
6.......(2,3,7).............A196165..A196166..A196167
7.......(1,1,3).............A196172..A196173..A196174
8.......(1,4,7).............A196179..A196180..A196181
9.......(1,15,19)...........A196186..A196187..A196188
10......(1,2,5).............A196241..A196242..A196243
1/2.....(2,3,4).............A195882..A195883..A195884
3/2.....(5,18,22)...........A195928..A195929..A195930
1/3.....(3,8,9).............A195990..A195991..A195992
2/3.....(4,9,11)............A196004..A196005..A196006
4/3.....(7,36,41)...........A196043..A196044..A196045
5/3.....(7,39,45)...........A196091..A196092..A196093
5/2.....(5,22,28)...........A196029..A196030..A196031
1/4.....(2,2,3).............A196262..A196263..A196264
3/4.....(2,6,7).............A196255..A196256..A196257
5/4.....(3,20,22)...........A196101..A196102..A196103
7/4.....(9,68,76)...........A196108..A196109..A196110
1/5.....(5,7,9).............A196351..A196352..A196353
1/8.....(4,10,11)...........A196358..A196359..A196360
-1......(1,1,1).............A195796..A195862..A195863
-3......(1,3,1).............A196372..A196373..A196374
-4......(1,4,1).............A196379..A196380..A196381
-5......(1,5,1).............A196386..A196387..A196388
-6......(1,6,1).............A196393..A196394..A196395
-1/2....(1,2,2).............A195875..A195876..A195877
-3/2....(2,3,2).............A195921..A195922..A195923
-5/2....(2,5,2).............A196365..A196366..A196367
-1/3....(1,3,3).............A195935..A195936..A195937
-2/3....(2,3,3).............A195997..A195998..A195999
-4/3....(3,4,3).............A196036..A196037..A196038
-5/3....(3,5,3).............A196084..A196085..A196086
-1/4....(1,4,4).............A196269..A196270..A196271
-3/4....(3,4,4).............A196249..A196250..A196246
From Georg Fischer, Oct 26 2020: (Start)
The Mathematica program below has fixed limits (z7, z8, z9). Therefore, it misses higher values of b. For example, the following triples are do not show up in the corresponding sequences:
A196112 A196113 A196114 - non-primitive 3-Pythagorean
49: 29 1008 1051
A196241 A196242 A196243 - primitive 10-Pythagorean
31: 13 950 1013
This problem affects 62 of the 74 parameter combinations. (End)

Examples

			The first seven 1-Pythagorean triples (a,b,c), ordered as
described above, are as follows:
3,5,7........7^2 = 3^2 + 5^2 + 3*5
5,16,19.....19^2 = 5^2 + 16^2 + 5*16
6,10,14.....14^2 = 6^2 + 10^2 + 6*10
7,8,13
7,33,37
9,15,21
9,56,61
10,32,38
		

Crossrefs

Programs

  • Maple
    f:= proc(a) local F,r,u,b;
        r:= 3*a^2;
        nops(select(proc(t) local b; b:= (r/t - t - 2*a)/4;
    (t + r/t) mod 4 = 0 and b::integer and b >= a end proc, numtheory:-divisors(3*a^2)));
    end proc:
    seq(a$f(a),a=1..100); # Robert Israel, Jul 04 2024
  • Mathematica
    z8 = 2000; z9 = 400; z7 = 100;
    k = 1; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
    d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
    t[a_] := Table[d[a, b], {b, a, z8}]
    u[n_] := Delete[t[n], Position[t[n], 0]]
    Table[u[n], {n, 1, 15}]
    t = Table[u[n], {n, 1, z8}];
    Flatten[Position[t, {}]]
    u = Flatten[Delete[t, Position[t, {}]]];
    x[n_] := u[[3 n - 2]];
    Table[x[n], {n, 1, z7}]  (* this sequence *)
    y[n_] := u[[3 n - 1]];
    Table[y[n], {n, 1, z7}]  (* A195866 *)
    z[n_] := u[[3 n]];
    Table[z[n], {n, 1, z7}]  (* A195867 *)
    x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
    y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
    z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
    f = Table[x1[n], {n, 1, z9}];
    x2 = Delete[f, Position[f, 0]]  (* A195868 *)
    g = Table[y1[n], {n, 1, z9}];
    y2 = Delete[g, Position[g, 0]]  (* A195869 *)
    h = Table[z1[n], {n, 1, z9}];
    z2 = Delete[h, Position[h, 0]]  (* A195870 *)

Extensions

Name corrected by Robert Israel, Jul 04 2024

A156679 Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).

Original entry on oeis.org

5, 13, 25, 17, 41, 61, 37, 85, 113, 65, 145, 181, 29, 101, 221, 265, 145, 313, 365, 53, 197, 421, 481, 257, 65, 545, 613, 85, 325, 685, 89, 761, 401, 841, 925, 125, 485, 1013, 1105, 73, 577, 1201, 149, 1301, 173, 677, 1405, 1513, 785, 185, 1625, 1741, 109, 229
Offset: 1

Views

Author

Ant King, Feb 15 2009

Keywords

Comments

The ordered sequence of A values is A020884(n) and the ordered sequence of C values is A020882(n) (allowing repetitions) and A008846(n) (excluding repetitions).

Examples

			As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=5, a(2)=13, a(3)=25 and a(4)=17.
		

References

  • Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
  • Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

Crossrefs

Programs

  • Haskell
    a156679 n = a156679_list !! (n-1)
    a156679_list = f 1 1 where
       f u v | v > uu `div` 2        = f (u + 1) (u + 2)
             | gcd u v > 1 || w == 0 = f u (v + 2)
             | otherwise             = w : f u (v + 2)
             where uu = u ^ 2; w = a037213 (uu + v ^ 2)
    -- Reinhard Zumkeller, Nov 09 2012
  • Mathematica
    PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[iHarvey P. Dale, May 10 2020 *)

A156681 Consider all Pythagorean triangles A^2 + B^2 = C^2 with A < B < C; sequence gives values of B, sorted to correspond to increasing A (A009004).

Original entry on oeis.org

4, 12, 8, 24, 15, 12, 40, 24, 60, 16, 35, 84, 48, 20, 36, 112, 30, 63, 144, 24, 80, 180, 21, 48, 99, 28, 72, 220, 120, 264, 32, 45, 70, 143, 60, 312, 168, 36, 120, 364, 45, 96, 195, 420, 40, 72, 224, 480, 60, 126, 255, 44, 56, 180, 544, 288, 84, 120, 612, 48, 77, 105
Offset: 1

Views

Author

Ant King, Feb 17 2009

Keywords

Comments

The ordered sequence of B values is A009012(n) (allowing repetitions) and A009023(n) (excluding repetitions).

Examples

			As the first four Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (6,8,10) and (7,24,25), then a(1)=4, a(2)=12, a(3)=8 and a(4)=24.
		

References

  • Albert H. Beiler, Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
  • W. Sierpinski, Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.

Crossrefs

Programs

  • Mathematica
    PythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i
    				

Formula

a(n) = sqrt(A156682(n)^2 - A009004(n)^2).

A198456 Consider triples a<=b

Original entry on oeis.org

3, 6, 10, 8, 15, 11, 21, 28, 13, 36, 16, 23, 45, 28, 55, 18, 23, 66, 21, 27, 78, 46, 91, 20, 23, 36, 53, 105, 26, 41, 120, 136, 28, 52, 77, 153, 31, 58, 86, 171, 40, 49, 190, 33, 44, 54, 71, 210, 36, 41, 78, 116
Offset: 1

Views

Author

Charlie Marion, Oct 26 2011

Keywords

Comments

See A198453.
The definition amounts to saying that T_a+T_b=T_c where T_i denotes a triangular number (A000217). - N. J. A. Sloane, Apr 01 2020

Examples

			2*3 + 2*3 = 3*4
3*4 + 5*6 = 6*7
4*5 + 9*10 = 10*11
5*6 + 6*7 = 8*9
5*6 + 14*15 = 15*16
6*7 + 9*10 = 11*12
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, New York, 1964, pp. 104-134.

Crossrefs

A294112 Practical numbers z such that z^2 = x^2 + y^2 for some practical numbers x and y with gcd(x,y,z) = 4.

Original entry on oeis.org

20, 100, 260, 340, 500, 740, 820, 1700, 2900, 3380, 4100, 5300, 5780, 6500, 7540, 8500, 8900, 9620, 9860, 10100, 11300, 12580, 13700, 13780, 13940, 14900, 15860, 16820, 17300, 18020, 18500, 18980, 19300, 19700, 22100, 23780, 25220, 27380, 28340, 29380, 30260, 30340, 30500, 30740, 33620, 34340, 35380, 35620, 36500, 37060
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 22 2017

Keywords

Comments

Conjecture: The sequence has infinitely many terms. Also, there are infinitely many Pythagorean triples (x,y,z) with x,y,z all practical and gcd(x,y,z) = 6.
It is easy to show that there are no Pythagorean triples (x,y,z) with x,y,z all practical and gcd(x,y,z) = 2.

Examples

			a(1) = 20 since 20^2 = 12^2 + 16^2 with 12, 16, 20 all practical and gcd(12,16,20) = 4.
a(2) = 100 since 100^2 = 28^2 + 96^2 with 28, 96, 100 all practical and gcd(28,96,100) = 4.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    f[n_]:=f[n]=FactorInteger[n];
    Pow[n_, i_]:=Pow[n,i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
    n=0;Do[If[pr[4m]==False,Goto[aa]];Do[If[SQ[(4m)^2-x^2]&&GCD[x,4m,Sqrt[(4m)^2-x^2]]==4&&pr[x]&&pr[Sqrt[(4m)^2-x^2]],n=n+1;Print[n," ",4m];Goto[aa]],{x,1,Sqrt[8]m}];Label[aa],{m,1,9265}]
Showing 1-5 of 5 results.