cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156702 Numbers k such that k^2 - 1 == 0 (mod 24^2).

Original entry on oeis.org

1, 127, 161, 287, 289, 415, 449, 575, 577, 703, 737, 863, 865, 991, 1025, 1151, 1153, 1279, 1313, 1439, 1441, 1567, 1601, 1727, 1729, 1855, 1889, 2015, 2017, 2143, 2177, 2303, 2305, 2431, 2465, 2591, 2593, 2719, 2753, 2879, 2881, 3007, 3041, 3167, 3169
Offset: 1

Views

Author

Vincenzo Librandi, Feb 13 2009

Keywords

Comments

Numbers k that are == +-1 (mod 9) and == +-1 (mod 32). - Charles R Greathouse IV, Dec 23 2011

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,127,161,287,289},50] (* Vincenzo Librandi, Feb 08 2012 *)
    With[{c=24^2},Select[Range[3200],Divisible[#^2-1,c]&]] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    a(n)=n\4*288+[-1,1,127,161][n%4+1]

Formula

G.f.: (-x^4 + 2*x^3 + 126*x^2 + 34*x + 127)/(x^5 - x^4 - x + 1). - Alexander R. Povolotsky, Feb 15 2009
a(n) = -36 + 27*(-1)^n + (4-4*i)*(-i)^n + (4+4*i)*i^n + 72*n. - Harvey P. Dale, Apr 25 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (cot(Pi/288) - tan(17*Pi/288))*Pi/288. - Amiram Eldar, Feb 26 2023
E.g.f.: 1 + 8*cos(x) + 9*(8*x - 1)*cosh(x) - 8*sin(x) + 9*(8*x - 7)*sinh(x). - Stefano Spezia, Oct 13 2024

Extensions

Corrected and edited by Vinay Vaishampayan, Jun 23 2010