A156712 Star numbers (A003154) that are also triangular numbers (A000217).
1, 7, 91, 1261, 17557, 244531, 3405871, 47437657, 660721321, 9202660831, 128176530307, 1785268763461, 24865586158141, 346332937450507, 4823795538148951, 67186804596634801, 935791468814738257, 13033893758809700791, 181538721154521072811, 2528508202404485318557
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..875
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 30, 56.
- Giovanni Lucca, Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences, Forum Geometricorum, Volume 16 (2016) 419-427.
- Wikipedia, Star Numbers
- Index entries for linear recurrences with constant coefficients, signature (15,-15,1).
Programs
-
Magma
[(Evaluate(ChebyshevSecond(n+1),7) - 13*Evaluate(ChebyshevU(n), 7) + 1)/2: n in [1..30]]; // G. C. Greubel, Oct 07 2022
-
Maple
f:= gfun[rectoproc]({a(n+3)=15*a(n+2)-15*a(n+1)+a(n),a(1)=1,a(2)=7,a(3)=91},a(n),'remember'): seq(f(n), n=1..30); # Robert Israel, Jan 01 2015
-
Mathematica
f[n_] := (Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)] + 4)/8; Array[f, 17] (* Robert G. Wilson v, Oct 28 2010 *)
-
PARI
Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-14*x+1)) + O(x^100)) \\ Colin Barker, Jan 01 2015
-
SageMath
def A156712(n): return (1 + chebyshev_U(n, 7) - 13*chebyshev_U(n-1, 7))/2 [A156712(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022
Formula
a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
If x^2 - 3*y^2 = 1 with x even then a(y) = (y+2)/4 evidently related to A001570 by: add 1 and halve.
G.f.: x*(1 - 8*x + x^2)/((1-x)*(1 - 14*x + x^2)). - Alexander R. Povolotsky, Feb 15 2009
a(n) = (4 + (2 + sqrt(3))*(7 - 4*sqrt(3))^n + (2 - sqrt(3))*(7 + 4*sqrt(3))^n)/8. - Colin Barker, Mar 05 2016
a(n) = (1/2)*( 1 + ChebyshevU(n, 7) - 13*ChebyshevU(n-1, 7) ). - G. C. Greubel, Oct 07 2022
Extensions
a(11) onwards from Robert G. Wilson v, Oct 28 2010
Comments