cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A156745 a(n) = Sum_{k=1..n} floor((n+k)/k) = n + Sum_{k=1..n} sigma_0(k), where sigma_0(k) is A000005(k). Also a(n) = n + A006218(n).

Original entry on oeis.org

2, 5, 8, 12, 15, 20, 23, 28, 32, 37, 40, 47, 50, 55, 60, 66, 69, 76, 79, 86, 91, 96, 99, 108, 112, 117, 122, 129, 132, 141, 144, 151, 156, 161, 166, 176, 179, 184, 189, 198, 201, 210, 213, 220, 227, 232, 235, 246, 250, 257, 262, 269, 272, 281, 286, 295, 300
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 14 2009

Keywords

Comments

Generalized sequence b(n) = Sum_{k=1..n} floor((n+k*t)/k) = t*n + Sum_{k=1..n} sigma_0(k), where sigma_0(k) is A000005(k). Also b(n) = t*n + A006218(n).
Partial sums of A334954. - Omar E. Pol, Sep 26 2020

Crossrefs

Programs

  • PARI
    a(n) = n + sum(k=1, n, numdiv(k)); \\ Michel Marcus, Oct 02 2020
    
  • Python
    from math import isqrt
    def A156745(n): return n-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = 2*n + Sum_{k=1..floor(n/2)} floor((n-k)/k). - Wesley Ivan Hurt, Dec 25 2020
a(n) = A005843(n) + A002541(n), after Wesley Ivan Hurt. - Omar E. Pol, Dec 25 2020

Extensions

More terms from Eric M. Schmidt, Feb 28 2014