cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062550 a(n) = Sum_{k = 1..2n} floor(2n/k).

Original entry on oeis.org

0, 3, 8, 14, 20, 27, 35, 41, 50, 58, 66, 74, 84, 91, 101, 111, 119, 127, 140, 146, 158, 168, 176, 186, 198, 207, 217, 227, 239, 247, 261, 267, 280, 292, 300, 312, 326, 332, 344, 356, 368, 377, 391, 399, 411, 425, 435, 443, 459, 467, 482, 492, 502, 514, 528
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2001

Keywords

Comments

The sequence A006218 : Sum_{i=1..n} floor(n/i) = Sum_{i=1..n} sigma_0(i). Sigma_0(i) is A000005. Sequences of the type : Sum_{i=1..f(n)} floor(f(n)/i)= Sum_{i=1..f(n)} sigma_0(i). This sequence a(n)= A006218(2*n). [Ctibor O. Zizka, Mar 21 2009]
For n > 0: row sums of the triangle in A013942. - Reinhard Zumkeller, Jun 04 2013

Crossrefs

Programs

  • Haskell
    a062550 0 = 0
    a062550 n = sum $ a013942_row n  -- Reinhard Zumkeller, Jun 04 2013
    
  • Mathematica
    Table[Total[Floor[2*n/Range[2*n]]], {n, 0, 100}] (* T. D. Noe, Jun 12 2013 *)
  • PARI
    a(n) = sum(k=1, 2*n, (2*n)\k); \\ Michel Marcus, Oct 09 2021
  • Python
    from math import isqrt
    def A062550(n): return (lambda m: 2*sum(2*n//k for k in range(1, m+1))-m*m)(isqrt(2*n)) # Chai Wah Wu, Oct 09 2021
    

Formula

a(n) = A006218(2n) = A056549(n)+A006218(n) = a(n-1)+A000005(2n-1)+A000005(2n)

Extensions

Data corrected for n > 30 by Reinhard Zumkeller, Jun 04 2013

A334954 a(n) is 1 plus the number of divisors of n.

Original entry on oeis.org

2, 3, 3, 4, 3, 5, 3, 5, 4, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 7, 5, 5, 3, 9, 4, 5, 5, 7, 3, 9, 3, 7, 5, 5, 5, 10, 3, 5, 5, 9, 3, 9, 3, 7, 7, 5, 3, 11, 4, 7, 5, 7, 3, 9, 5, 9, 5, 5, 3, 13, 3, 5, 7, 8, 5, 9, 3, 7, 5, 9, 3, 13, 3, 5, 7, 7, 5, 9, 3, 11, 6, 5, 3, 13, 5, 5, 5, 9, 3, 13, 5, 7, 5, 5, 5, 13, 3, 7, 7, 10, 3, 9, 3, 9
Offset: 1

Views

Author

David A. Corneth and Omar E. Pol, Aug 25 2020

Keywords

Comments

a(n) is the number of times that every divisor of n occurs in the coordinates of divisors of n mentioned in A337360 (Corneth).
a(n) = 3 if and only if n is prime.
a(n) is even if and only if n is a square.
a(n) is the number of characteristic subgroups of the dihedral group D_2n. - Firdous Ahmad Mala, Dec 25 2021

Crossrefs

Partial sums give A156745.

Programs

  • Mathematica
    1 + DivisorSigma[0, Range[105]] (* Michael De Vlieger, Sep 11 2020 *)
  • PARI
    a(n) = numdiv(n) + 1

Formula

a(n) = 1 + A000005(n).
a(n) = A337360(n)/A000203(n).
a(n) = A212356(n) for n >= 3. - Ilya Gutkovskiy, Aug 27 2020
Showing 1-2 of 2 results.