A156992 Triangle T(n,k) = n!*binomial(n-1, k-1) for 1 <= k <= n, read by rows.
1, 2, 2, 6, 12, 6, 24, 72, 72, 24, 120, 480, 720, 480, 120, 720, 3600, 7200, 7200, 3600, 720, 5040, 30240, 75600, 100800, 75600, 30240, 5040, 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320, 362880, 2903040, 10160640, 20321280, 25401600, 20321280, 10160640, 2903040, 362880
Offset: 1
Examples
The triangle starts: 1; 2, 2; 6, 12, 6; 24, 72, 72, 24; 120, 480, 720, 480, 120; 720, 3600, 7200, 7200, 3600, 720; 5040, 30240, 75600, 100800, 75600, 30240, 5040; 40320, 282240, 846720, 1411200, 1411200, 846720, 282240, 40320; From _Dennis P. Walsh_, Nov 26 2011: (Start) T(3,2) = 12 since there are 12 ways to arrange books b1, b2, and b3 on shelves <shelf1><shelf2>: <b1><b2,b3>, <b1><b3,b2>, <b2><b1,b3>, <b2><b3,b1>, <b3><b1,b2>, <b3><b2,b1>, <b2,b3><b1>, <b3,b2><b1>, <b1,b3><b2>, <b3,b1><b2>, <b1,b2><b3>, <b2,b1><b3>. (End)
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 98
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- OEIS Wiki, Sorting numbers
Crossrefs
Programs
-
Magma
[Factorial(n)*Binomial(n-1,k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, May 10 2021
-
Maple
seq(seq(n!*binomial(n-1,k-1),k=1..n),n=1..10); # Dennis P. Walsh, Nov 26 2011 with(PolynomialTools): p := (n,x) -> (n+1)!*hypergeom([-n],[],-x); seq(CoefficientList(simplify(p(n,x)),x),n=0..5); # Peter Luschny, Apr 08 2015
-
Mathematica
Table[n!*Binomial[n-1, k-1], {n,10}, {k,n}]//Flatten
-
Sage
flatten([[factorial(n)*binomial(n-1,k-1) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, May 10 2021
Formula
E.g.f. for column k is (x/(1-x))^k. - Geoffrey Critzer, Mar 05 2010
Coefficient triangle of the polynomials p(n,x) = (n+1)!*hypergeom([-n],[],-x). - Peter Luschny, Apr 08 2015
Comments